【正文】 《压缩感知简要介绍》 压缩感知(Compression Sensing)是现代信号处理领域的一个重要概念,它改变了我们对传统信号采集和压缩的理解。本篇内容将围绕传统信号压缩方法、压缩感知方法以及正交匹配追踪算法展开讨论。 **一、传统压缩方法** 在传统的信号处理中,我们通常通过采样定理来获取和重构信号。高维信号往往具有很高的冗余度,实际有意义的信息只占据一小部分。例如,图像信号在频域中可以被压缩,通过去除高频噪声或不重要的频谱成分。这一过程包括对信号进行采样、压缩、传输或存储,然后在接收端进行解压和重构。然而,传统方法依赖于信号的连续性和采样率,且通常假设信号是密集表示的,即信号的大部分元素都不为零。 **二、压缩感知方法** 压缩感知的出现打破了这一传统观念,它提出即使信号是稀疏的(即大部分元素为零),也可以通过远低于奈奎斯特定理要求的采样率进行有效的重构。在压缩感知中,信号不是先被完整采样再进行压缩,而是直接在采样阶段就实现压缩。这一过程被称为“压缩采样”(Compressive Sampling),通过测量信号的线性组合来捕获其重要信息,之后在接收端利用稀疏性进行重构。这种方法的关键在于找到合适的测量矩阵,使得信号能在低采样率下仍能保持足够的信息。 **三、信号重构算法——正交匹配追踪算法** 正交匹配追踪(Orthogonal Matching Pursuit, OMP)是压缩感知领域的一种常用重构算法。在信号表达过程中,如果一组基不能完全匹配信号的特性,我们可以使用多组基(字典)的组合,但这可能导致向量线性不独立,使得信号的稀疏表示不唯一。OMP算法解决了这一问题,它通过迭代的方式逐步选取字典中最相关的一组向量来构建信号的稀疏表示,直到达到预定的稀疏度或者满足一定的重构误差阈值。相比于其他重构算法,如最小均方误差(LMS)或梯度下降法,OMP的优点在于计算效率高且能保证在理想条件下恢复原始信号。 OMP算法的基本步骤包括: 1. 初始化,选择第一个非零系数对应的字典元素。 2. 对残差进行正交投影,找到与残差最相关的字典元素。 3. 更新系数和字典子集,将新找到的元素加入子集。 4. 重复步骤2和3,直至达到预设的迭代次数或达到重构误差阈值。 尽管OMP算法在一定程度上简化了重构过程,但它的性能依赖于字典的质量和信号的稀疏性。在某些情况下,其他算法如迭代硬阈值(IHT)或基 pursuit(BP)可能表现更优。 总结来说,压缩感知提供了一种革命性的信号处理方式,通过直接在采样阶段实现压缩,降低了数据处理的复杂性和成本。正交匹配追踪算法作为重构策略之一,以其高效性和适用性在压缩感知领域占据一席之地。深入理解和应用这些理论,有助于我们在实际的通信、图像处理、医疗成像等场景中设计更高效的数据采集和处理系统。参考文献中的文章可以为读者提供更深入的理论背景和技术细节。
2025-06-10 10:32:00 1.65MB
1
压缩感知及其图像处理应用研究进展与展望,一篇文献
2025-05-30 10:49:36 4.09MB 压缩感知 图像处理
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像重建:ASTRA算法图像重建、BP神经网络图像重建、投影法图像重建、小波变换图像分解重建、字典学习KSVD图像低秩重建、主成分分析PCA图像重建、正则化图像去噪重建、离散余弦变换DCT图像重建、卷积神经网络的图像超分辨率重建、SCNN图像重建、SAR图像重建、OSEM重建、超分辨率图像重建、Zernike矩图像重建、Split Bregman图像重建
2024-11-04 20:26:30 10KB matlab
1
对于逆合成孔径雷达(ISAR)目标成像,从少量压缩测量回波数据重建高分辨率运动目
标是不适定问题,且观测噪声也会影响重建结果。在频率步进连续波ISAR 系统回波观测模型基础
上,结合压缩感知原理,给出了一种基于全变差正则化的ISAR 压缩感知成像模型,通过将该优化
模型转化为一系列简单代理函数进行求解,提出了一种快速优化最小算法。最后在不同回波信噪
比条件下进行仿真验证。实验结果表明,当回波信噪比大于10 dB 时,本文方法明显优于距离–多
普勒算法和基于L 1 范数的压缩感知成像方法。
2024-05-17 13:29:04 398KB 压缩感知;
1
一种基于压缩感知的天波超视距雷达短时海杂波抑制方法
2024-01-16 15:44:00 428KB 研究论文
1
针对矿山井下环境的特殊性导致井下监测到的海量信息的获取受到限制等问题,对目前备受关注的基于信号稀疏性的新型采样理论——压缩感知理论进行研究,以矿山物联网为研究对象,介绍了压缩感知基本理论及关键技术,分析了压缩感知理论在这个应用环境中的优势,理论上满足矿山物联网应用的需求。最后,利用Matlab仿真软件,对煤矿井下采集到的瓦斯浓度数据进行稀疏性分析、压缩与重构,结果表明压缩感知技术可以较精确地恢复原始瓦斯浓度信号。
2024-01-12 17:54:44 240KB 行业研究
1
(2)联合稀疏表示 构造压缩测量矩阵 对接收信号 进行联合稀疏表示,即是充分利用接收信号自身以及接收信号之间的相关性信息,对变换域系数进行联合编码,对接收信号进行降低冗余度的信息融合 。 分布式压缩感知(DCS)与MIMO雷达 3 压缩感知应用
2023-12-04 16:17:21 2.83MB 压缩感知
1
借花献佛,这个代码太好了,拿出来与大家分享
2023-11-24 21:15:00 2KB matlab
1
压缩感知代码,matlab,cgsolve
2023-10-07 20:32:52 2KB 压缩感知
1
基于kronecker压缩感知和基本元胞自动机加扰的图像加密和压缩
2023-05-09 21:36:59 2.75MB 研究论文
1