双目相机技术是计算机视觉领域中的重要组成部分,它主要用于实现三维空间信息的获取。通过同时拍摄同一场景的两幅图像,双目相机可以计算出物体的深度信息,从而实现三维重建和点云恢复。本教程将围绕双目相机的标定、校正、点位恢复、视差图和深度图的生成以及点云构建等方面进行详细阐述。 **一、双目相机标定** 双目相机标定是获取其内参和外参的过程,以便精确地将二维图像坐标转换为三维空间坐标。内参包括焦距、主点坐标等,外参则涉及相机间的相对位置和姿态。常用的标定方法是使用棋盘格图案,通过对多个不同角度拍摄的图像进行处理,求解相机参数。OpenCV库提供了便捷的相机标定工具,可以简化这一过程。 **二、相机校正** 校正主要针对镜头畸变,包括径向畸变和切向畸变。双目相机的每只“眼睛”都需要单独进行校正,以确保图像的准确性。校正过程通常通过多项式模型来拟合畸变,并生成校正后的图像。这一步对于后续的特征匹配和深度计算至关重要。 **三、点位恢复** 点位恢复是指从双目图像中提取特征点,并计算它们在三维空间中的坐标。需要对两幅图像进行特征检测(如SIFT、SURF或ORB),然后进行特征匹配。匹配的特征点对可用于三角测量,通过最小化重投影误差来求解每个匹配点的三维坐标。这一步涉及几何三角法,是双目视觉的核心算法。 **四、视差图与深度图** 视差图是双目视觉中计算出来的关键结果,表示对应像素在两幅图像间的水平偏移,而深度图则反映了每个像素对应的物体距离。视差图可以通过立体匹配算法得到,如半全局匹配(Semi-Global Matching,SGM)或基于成本聚合的方法。视差图与相机的内参和外参结合,可以进一步转化为深度图。 **五、点云恢复** 有了深度图,我们就可以通过反投影将图像像素转换为三维空间中的点,从而得到点云。点云是三维重建的基础,可以用于各种应用,如3D建模、环境扫描和避障导航。点云数据可以使用PCL(Point Cloud Library)等库进行处理,包括滤波、分割、表面重建等操作。 **六、实际应用** 双目相机技术广泛应用于机器人导航、自动驾驶、无人机、增强现实等领域。例如,在自动驾驶中,双目视觉可以帮助车辆识别前方障碍物的距离和形状;在无人机避障中,通过实时的点云重建可以判断飞行路径的安全性。 双目相机技术涉及多个环节,从标定、校正到点云恢复,每一个步骤都是至关重要的。通过深入理解和实践,我们可以有效地利用双目相机获取三维世界的信息,为实际应用提供强大的技术支持。如果你对这部分代码有所优化,欢迎分享,共同推进计算机视觉的发展。
2025-04-18 10:24:22 280.94MB
1
在当今科技飞速发展的时代,图像处理和计算机视觉领域已经成为了研究的热点。其中,单目与双目相机系统及其与惯性测量单元(IMU)的联合标定技术,是实现精确视觉定位与导航的关键技术之一。该技术涉及到多个领域的知识,包括机器视觉、传感器融合、信号处理等。 单目相机系统指的是使用一个摄像头来获取图像信息的系统,它通常用来测量物体在图像平面上的位置。由于缺乏深度信息,单目相机系统在处理物体距离和尺度时存在局限性。相比之下,双目相机系统通过两个摄像头捕捉同一场景,利用两个视角之间的差异来计算物体的深度信息,从而可以重建出三维空间的结构。 IMU(Inertial Measurement Unit)是惯性测量单元的简称,它通过组合加速度计和陀螺仪等传感器,能够提供关于物体运动状态的连续信息,包括速度、位置、加速度和角速度等。IMU在导航、定位、机器人控制等方面有广泛的应用。 当单目或双目相机系统与IMU结合时,可以利用相机提供的视觉信息和IMU提供的动态信息,通过数据融合技术,实现更精确的三维空间定位和运动估计。这种联合标定技术涉及到了复杂的系统校准和误差补偿过程,包括相机内部参数标定、相机间几何关系标定以及相机与IMU之间的外部参数标定。 在进行标定的过程中,研究者需要先分别对单目和双目相机进行内部标定,确定相机的焦距、畸变系数等内部参数。然后对相机间的几何关系进行标定,保证双目相机系统的基线长度和极线校正的准确性。相机与IMU的联合标定则需要通过观测到的图像特征和IMU的测量数据,估算出它们之间的相对位置和姿态关系,确保两者能够同步工作。 标定过程中,算法的选择、特征点提取、误差点剔除、标定精度评估等环节都是影响最终标定结果的关键因素。标定实验通常需要在不同的环境和状态下进行,以确保标定参数具有广泛的适用性。此外,标定的实时性和鲁棒性也是评估一个标定系统性能的重要指标。 标定完成后,可以通过联合标定得到的参数,将相机捕获的图像信息与IMU的测量信息进行融合,实现更为准确的三维定位和姿态估计。这种技术的应用范围非常广泛,包括但不限于自动驾驶汽车、无人机、增强现实、机器人导航、虚拟现实等领域。 单目双目相机与IMU联合标定的技术与方法是一门综合性很强的交叉学科技术。它不仅需要深入理解相机的工作原理和IMU的测量特性,还需要掌握先进的数据处理和融合算法,以实现对复杂环境的准确感知和高效导航。
2025-04-03 11:56:16 1.22MB kind
1
基于opencv的双目相机标定程序,用的张正友的方法,非常好用的程序,使用前需要先获得单目相机标定的参数,然后带入此双目程序,再根据拍摄的两相机公共视场下的棋盘格的图像,就可以解算出两相机之间的位置关系,建立双目坐标系。
matlab工具箱,可完成单目相机的标定、双目相机的标定,调用方便。
2022-10-27 17:23:44 281KB matlab 相机标定 双目视觉
1
一、 双目测距原理 二、 立体视觉模型 三、 立体校正
2022-09-10 16:39:49 356KB 算法 平面
1
在计算机视觉中,可以通过双目摄像头实现,常用的有 BM 算法和 SGBM 算法等,双目测距跟激光不同,双目测距不需要激光光源,是人眼安全的,只需要摄像头,成本非常底,也用于应用到大多数的项目中。使用双目摄像头和 SGBM 算法实现距离测量。 参见博客:https://blog.csdn.net/weixin_38346042/article/details/124739933?spm=1001.2014.3001.5501
2022-05-13 12:06:20 2.44MB 源码软件 算法 图像 双目相机标定
该资源主要是针对双目相机标定,可以进行计算机视觉的下一步工作
2021-12-10 19:43:54 4.97MB 双目标定
1
张正友标定法基于opencv源代码 编译通过 没有问题 还有自己拍的待标定图片 可以直接使用
2021-08-31 09:46:31 40.76MB 张正友相机标定
1
里面是一些用于标定的图片.标定板拍摄的张数要能覆盖整个测量空间及整个测量视场,把相机图像分成四个象限(如图1所示),应保证拍摄的标定板图像均匀分布在四个象限中,且在每个象限中建议进行不同方向的两次倾斜,图2是一组推荐摆放方式图片。 标定图片的数量通常在15~25张之间,图像数量太少,容易导致标定参数不准确。 圆或者圆环特征的像素数尽量大于20,标定板的成像尺寸应大致占整幅画面的1/4 用辅助光源对标定板进行打光,保证标定板的亮度足够且均匀 标定板成像不能过爆,过爆会导致特征轮廓的提取的偏移,从而导致圆心提取不准确
2021-04-21 17:25:06 6.30MB calibration
1
相机标定时需要使用的黑白棋盘格图,可以下载后按实际需求打印,文件为pdf格式,方便使用,可以在Malab,OpenCV的标定过程中作为模板使用。
2021-04-17 18:06:05 5KB Matlab标定 双目 相机标定 黑白
1