LabVIEW,全称Laboratory Virtual Instrument Engineering Workbench,是一款由美国国家仪器公司(NI)开发的图形化编程环境,主要用于创建虚拟仪器应用。在LabVIEW中,“队列”是一种重要的数据结构,它允许用户存储和处理多个数据项,而“变体”则是一种通用的数据类型,能够存储各种不同类型的数据。 在LabVIEW中,队列(Queue)是一种先进先出(FIFO)的数据结构,用于临时存储和传递数据。当一个新元素被添加到队列尾部时,队列头部的元素就会成为最早被处理的元素。队列常用于多线程或多任务环境,以便协调不同部分的数据流,比如在模块之间传递消息或数据。在处理大量数据时,队列可以提供高效的管理和调度机制,避免数据丢失,确保数据按照正确的顺序进行处理。 变体(Variant)是LabVIEW中一种灵活的数据类型,它可以容纳几乎所有的LabVIEW数据类型,包括整型、浮点型、字符串、数组、簇等。变体的使用使得程序在处理未知类型或者多种类型数据时变得更为便捷,因为无需预先知道数据的具体类型。在队列中使用变体尤其有用,因为这样可以存储各种不同类型的数据,而不需要为每种类型的数据创建单独的队列。 队列与变体的结合使用,可以构建出强大的数据处理系统。例如,你可以创建一个队列来存储不同类型的变体数据,然后在后台线程中逐个处理这些数据。处理过程可以根据数据的类型进行动态调整,从而实现高度自适应的数据处理逻辑。 在“队列多数据处理(变体0)”这个示例中,可能包含了一系列演示如何利用LabVIEW队列和变体进行复杂数据处理的范例程序。这些范例可能涵盖如何创建队列、向队列中添加变体数据、从队列中移除数据以及根据变体类型执行相应处理的代码结构。通过学习和理解这些示例,开发者能够掌握在实际项目中如何高效地管理并处理多种类型的数据流。 为了深入了解这一主题,你可以打开提供的压缩包文件,查看其中的范例程序,通过运行和分析代码来熟悉队列和变体的用法。同时,结合LabVIEW的帮助文档和在线资源,可以更全面地了解这两个核心概念在实际应用中的具体操作和最佳实践。在开发过程中,合理运用队列和变体,可以极大地提高代码的可扩展性和灵活性,为解决复杂的数据处理问题提供有力的支持。
2025-04-29 10:23:44 43KB labview
1
变体飞行器是一种新型概念飞行器,能够在飞行中实时改变其气动外形,以适应不同的飞行环境和执行多种任务。这类飞行器通过改变其外形,如马赫数、高度、大气风场等,以及执行不同的飞行任务,比如巡航和攻击,来优化其空气动力学特性,从而保持最佳的飞行状态。 变体飞行器的变参数建模和鲁棒最优控制,是研究和设计这类飞行器的重要课题。由于变体飞行器在变形过程中,其气动参数、结构特性等都会发生变化,因此,传统的固定参数建模方法已经无法满足需要。变参数建模方法,如矢量力学建模、数学分析建模和多体建模等方法,可以更好地适应这类飞行器的特性。 在变体飞行器的建模过程中,描述变形与气动参数的关系是非常关键的一步。需要研究不同变形方式下的气动参数,并拟合出气动参数与变形方式之间的函数关系。然后,基于这些关系,建立变体飞行器的非线性动力学模型,该模型将包含弯度参数等关键变形参数。进一步,还需要建立飞行器的线性变参数模型,以分析变形过程中飞行器特性的变化。 变体飞行器的变形过程往往伴随着非线性特征,因此需要采用鲁棒最优控制的方法来设计控制器,以保证变形过程的稳定性和飞行性能。鲁棒最优控制是在考虑系统不确定性和外部干扰的情况下,设计出的性能最优的控制器。仿真结果显示,通过设计鲁棒最优控制器,可以有效保证变形过程的稳定性,并能显著改善飞行性能。 关键词“变体飞行器”、“变参数建模”、“鲁棒最优控制”和“变形稳定控制”涵盖了文章的核心内容。中图分类号V249.1则指出这篇文章的专业分类属于航空动力学和飞行控制技术领域。 引言中还提到了变体飞行器常见的变形方式,包括伸缩、折叠、变后掠等。这些变形方式直接关系到飞行器的空气动力学特性和飞行性能,因此是建立变体飞行器动力学模型的关键所在。 在建模过程中,由于变体飞行器具有复杂的变形结构和作动机械,传统的建模方法通常会比较复杂。矢量力学建模、数学分析建模和多体建模等方法各有特点,但均需针对变体飞行器的特殊结构进行适当调整和优化。 文章还提到了基于慢变系统理论的变形过渡过程的可控性。这意味着在一定变形速率范围内,变体飞行器的变形过渡过程是可以被控制和预测的。这对设计和实现鲁棒最优控制器具有重要的意义,因为这确保了控制器设计的可行性与有效性。 文章作者庄知龙和陆宇平分别来自南京航空航天大学自动化学院,他们在飞行控制技术领域有着深入的研究,并且发表了多篇相关领域的学术论文。庄知龙主要研究方向是飞行控制技术,而陆宇平教授的主要研究方向包括智能变体控制、网络化控制系统理论与应用、高超声速飞行控制等。
2025-04-09 17:38:39 228KB 首发论文
1
我们表明,在Georgi-Machacek模型的标量势中不存在三线性项的情况下,重带电标量不一定与h→γγ衰减幅度解耦。 在这种情况下,希格斯到双光子信号强度的测量可能会在参数空间中施加严格的约束。 使用高光度LHC(HL-LHC)和ILC的预计精度,我们发现三重态真空期望值的上限可以低至10 GeV。 我们还发现,当与来自摄动统一性和稳定性的理论约束结合时,可以完全排除这种变体
2024-07-04 23:29:04 919KB Open Access
1
车辆路径优化问题(VRP)变体及数学模型
2024-04-25 15:15:13 72KB
1
rnaseq_variant_calling_workflow 下载 使用以下命令克隆git存储库: git clone https://github.com/durrantmm/rnaseq_variant_calling_workflow.git 安装 此工作流使用conda环境来满足所有必要的依赖关系。 确保您已安装anaconda。 下载。 您只需输入以下内容就可以安装工作流程: bash install.sh 在您的控制台中。 现在是时候进行配置了。 配置 这是正确运行工作流程中非常重要的一步。 打开提供的config.yaml文件以开始使用 设置GATK和Picard执行路径 config.yaml文件的前两个参数是 gatk_path: "java -jar /path/to/GenomeAnalysisTK.jar" picard_path: "java -jar
2023-04-23 16:56:04 9KB Python
1
nsga ii算法代码MATLAB 演示“工具箱” 多目标优化的差分进化 这些代码是由()在其理学硕士期间开发的。 在()教授的指导下,在米纳斯吉拉斯州联邦大学就读。 Octave-Matlab文件夹包含Octave的实现(也应在Matlab上工作)。 实现了以下算法: 后验方法(无首选项): – DEMO [1]:具有非支配排序的常规DEMO; – IBEA [2]:使用指标代替DEMO。 先验的或交互式的(具有首选项): – R-DEMO [3]:R-NSGA-II,但改用DEMO; – PBEA [4]:IBEA,但使用参考点; – PAR-DEMO(nds)[5]:我们提出的使用非支配排序的方法; – PAR-DEMO(ε)[5]:相同的方法,但使用指示符。 Fillipe的理学硕士论文可用,并包含了多目标优化和基于偏好的方法的广泛评论。 它还包含对基于首选项的自适应兴趣区域(PAR)框架的更广泛的描述和讨论。 如果您以任何方式使用这些代码,请引用我们的论文[5]: @article{Goulart2016, doi = {10.1016/j.ins.2015.09.015},
2023-04-13 19:25:49 307KB 系统开源
1
softmax_variants softmax变体的各种损失函数:中心损失,余面损失,高边距高斯混合,由pytorch 0.3.1实现的COCOLoss 训练数据集是MNIST 您可以直接运行代码train_mnist_xxx.py重现结果 参考文件如下: 中锋失利:温彦东,张凯鹏,李志峰和乔巧。 一种用于深度人脸识别的判别性特征学习方法。 ECCV 2016 Cosface损失:王浩,王一彤,周正,邢吉,狄宏恭,周静超,李志峰和刘伟。 CosFace:用于深脸识别的大余量余弦损失。 CVPR2018 大幅度高斯混合损失:万维涛,钟元仪,李天鹏,陈建生。 重新考虑图像分类中损失函数的特征分布。 CVPR 2018 COSO损失:刘宇,李洪阳,王小刚。 重新思考特征识别和聚合,以进行大规模识别。 NIPS研讨会2017 学到的二维嵌入功能包括: softmax损失 可可
2023-03-30 16:54:29 619KB deep-learning Python
1
PART ONE/为什么需要图神经网络 PART TWO/什么是图神经网络(包括图的基本知识,及基本GNN的操作) PART THREE/图神经网络的变体(图神经网络的3个变体,图卷积神经网络(又可分为基于空间域的图卷积神经网络和基于频域的图卷积神经网络),基于注意力的图神经网络,基于自编码器的图神经网络)。包括DCNN(Diffusion-Convolution Neural Network、NN4G(Neural Networks for Graph)、MPNN:Message Passing Neural Network、GAT (Graph Attention Network)、图自编码器(graph autoencoder,GAE)、变分图自编码器(variational graph autoencoder,VGAE) PART FOUR/应用,在自然语言处理方面的应用,在计算机视觉方面的应用,在推荐系统方面的应用,在预测问题方面的应用
2022-12-19 16:28:05 12.69MB 图神经网络 GNN DCNN GAE
1
1.GAN背景 2.GAN原理 3.最原始GAN 4.GAN变体 5.整整63页的ppt,下载就是赚到 到2014为止,最广泛使用和最成功的机器学习形式是监督学习。通过给定包含{输入X,输出Y}的训练数据集,监督学习算法学习从输入到输出的映射关系,以分类问题举例,监督学习算法得到的模型能够较好的识别特定的类别(一张照片属于狗或猫的情况)。 然而现有的监督学习通常需要数百万个训练数据来达到超过人类表现的效果,这对训练数据集的获取带来了极大的挑战。
2022-11-22 20:26:21 5.76MB 深度学习 GAN 人工智能
1
内容概要:原始的梯度下降法,三种变体,以及多个优化算法的基础介绍和伪代码。内含latex文件,有大量公式和伪代码的编写。 适合人群:想了解梯度下降法和latex学习人群
2022-11-22 15:29:29 266KB 随机梯度下降 梯度下降 latex
1