在深度学习领域,图卷积神经网络(GCN)是一种特别适合处理图结构数据的模型。它通过在图的节点上施加卷积操作,能够提取和利用节点的局部特征,从而在各种图结构数据上取得优秀的表现。GCN广泛应用于社交网络分析、生物信息学、分子建模等多个领域。 ASTGCN(Attention Spatial Temporal Graph Convolutional Network)则是图卷积网络的一种变体,它在传统GCN的基础上引入了注意力机制和时空特征处理,以提高模型对时间序列数据和空间关系数据的处理能力。通过注意力机制,ASTGCN能够更加智能地识别并赋予图数据中不同节点或边不同的权重,从而提升对数据特征的学习效果。这种模型特别适合处理时空数据,例如城市交通流量预测、天气预测等,因为这些数据通常包含时间和空间两个维度的依赖关系。 GitHub作为一个开源社区,汇集了大量来自全球的研究者和开发者,他们共同分享代码、讨论问题,并且协作解决问题。在这里,许多深度学习领域的项目代码公开,方便研究人员和学习者理解和复现先进的算法。当作者发现一个项目有学习和应用价值时,他们可能会基于自己的理解对原始代码进行修改和优化,使其结构更加清晰、注释更加详尽,以便于其他初学者或研究者学习和使用。这样不仅能够促进知识的传播,还能推动技术的交流和进步。 对于初学者来说,学习ASTGCN这样复杂的模型可能会有一定的难度。但是,通过一个结构化、有注释的完整项目,初学者能够更好地理解模型的工作原理和代码实现方式。这种项目的优点在于,它不仅提供了理论知识,还提供了实践操作的机会,使学习者能够在实践中掌握如何从数据预处理开始,到模型训练、调试再到模型评估的全过程。 由于本段内容是针对标题中提到的“ASTGCN完整项目(修改版)”进行详细解析,无法提供具体的文件名称列表。然而,可以推测一个针对该主题的项目文件结构可能包括但不限于:模型代码(包括数据加载、预处理、网络构建、训练和测试等部分),文档(解释模型结构和数据流程),甚至可能包括使用说明和示例数据集。这样的文件结构有助于学习者一步步跟随项目前进,从而深入理解ASTGCN模型的每一个细节。
2025-04-22 15:31:28 479.59MB 深度学习 图卷积神经网络 项目
1
在Cora和Citeseer数据集上用图卷积神经网络实现链路预测,包括GCN网络搭建、Cora和Citeseer数据集的数据预处理,以及链路预测网络的训练和测试代码。
2024-05-08 14:05:12 7KB Cora 链路预测 图卷积神经网络
1
在PPI数据集上用图卷积神经网络实现节点分类,包括GCN分类网络搭建、PPI数据集的数据预处理,以及节点分类网络的训练和测试代码。
2024-01-06 14:44:02 7KB 图卷积神经网络
1
摘要过去几年,卷积神经网络因其强大的建模能力引起广泛关注,在自然语言处理、图像识别等领域成功应用。然而,传统的卷积神经网络只能处理欧氏空间数据,而现实生活中的许
2023-02-15 15:02:58 1.46MB
1
最全的图卷积神经网络讲解+图卷积神经网络的发展+GCN的应用领域+GCN的种类+GCN的公式推导,简单来说,这篇论文包含了图卷积神经网络的各个模块,十分的详细!
2022-11-21 20:26:33 1.49MB 图神经网络
1
PyTorch中的RAHGCN 1.概述 该存储库是PyTorch中通过强化学习(RAHGCN)实现的自适应双曲图卷积神经网络。 下游任务包括: 链接预测( lp ) 节点分类( nc ) 2.设定 2.1下载代码 首先从Github下载源代码。 git clone git@github.com:fuxingcheng/RHGNN.git" cd rahgcn 2.2启动虚拟环境 我们建议在虚拟环境中设置我们的项目。 您可以选择conda或virtualenv来创建和管理虚拟环境。 如果您尚未安装conda,请按照的说明进行安装。 如果尚未安装virtualenv,则只需运行pip3 install virtualenv 。 对于conda : conda env create -f environment.yml python=3.6 source activate ra
2022-10-26 21:08:44 6.5MB Python
1
更新:签出库 ,它在一个漂亮干净的Python包中重新实现了学习分支所需的一切(位于)。 图卷积神经网络的精确组合优化 Maxime Gasse,DidierChételat,Nicola Ferroni,Laurent Charlin,Andrea Lodi 这是我们NeurIPS 2019的正式实施。 安装 请参阅安装说明。 运行实验 设置覆盖 # Generate MILP instances python 01_generate_instances.py setcover # Generate supervised learning datasets python 02_generate_samples.py setcover -j 4 # number of available CPUs # Training for i in {0..4} do python 03_
2022-06-26 00:15:42 52KB neurips-2019 Python
1
图卷积神经网络及其应用,来自中科院计算所沈华伟博士在ICLR 2019顶会上的演讲稿,欢迎大家下载学习。
2021-10-27 20:25:14 1.76MB GNN ICLR_2019
1
基于图卷积神经网络的软件定义电力通信网络路由控制策略.pdf
2021-09-25 17:06:17 1.85MB 神经网络 深度学习 机器学习 数据建模