受复杂地形条件的影响,快速准确探查不积水老窑采空区是煤矿地球物理勘探的研究难点。通过研究瞬变电磁法在煤矿水文物探中的探测技术,利用该方法受地形影响较小的特点,回避对低阻体反应敏感的思路,选用小发射线框、高发射频率、合适的时间窗口,在其他物探方法无法施工的地形复杂地区,完成了不积水采空区的探测工作,总结了其在探测资料中的高阻电性反映特征,推断的不积水采空区范围与巷道掘进揭露情况相符合,表明该方法可以用于煤矿高阻采空区的定位探测。
1
本文详细介绍了CesiumEarth三维地形切片数据的制作过程。首先说明了地形切片数据在三维地球中表现地表高低起伏的重要性,并推荐了地理空间数据云作为免费DEM数据的来源。文章介绍了DEM原始数据格式(如tif、tiff、dem等)以及可用的切片工具,特别推荐了免费使用的CesiumLab。随后分步骤讲解了CesiumLab地形切片的具体操作流程:从输入文件的选择和坐标参数设置,到处理参数的默认配置,再到输出文件的存储类型选择和目标路径指定。最后解释了地形切片输出后的文件结构,指出系统会自动解析索引说明文件layer.json,用户只需选择地形路径即可添加图层。整个过程清晰明了,为需要制作三维地形切片的用户提供了实用指导。 CesiumEarth是一个强大的三维地球可视化软件,广泛应用于地理信息系统和虚拟现实领域。为了实现真实感的地形显示,三维地形切片制作是至关重要的环节。地形切片可以展现地表高低起伏的细节,为用户提供一个生动的三维世界体验。 文章首先强调了地理空间数据的重要性,这些数据通常以DEM(数字高程模型)格式存在,如常见的tif、tiff、dem等格式。地理空间数据云平台提供了一个获取免费DEM数据的途径。接着,文章提到了切片工具的重要性,尤其是CesiumLab这个免费工具,它对于制作CesiumEarth所需的地形切片提供了极大的便利。 文章详细介绍了使用CesiumLab制作地形切片的流程。第一步是准备输入文件,用户需要根据个人需求从地理空间数据云下载相应的DEM数据,并在CesiumLab中选择相应的文件。之后,用户需要进行坐标参数的设置,确保切片能够正确地映射到地球表面上。处理参数的默认配置提供了一个基础的起点,而用户可以根据实际情况进行调整。输出文件的存储类型和目标路径是制作过程中需要注意的细节,确保输出文件的组织结构和存储位置符合用户的项目需求。 文章深入解释了制作完成后地形切片文件结构,这包括了各种地形数据文件和索引文件。特别是layer.json文件,它作为一个索引文件,对各个切片文件的位置进行了说明,用户在添加图层时只需指定地形路径,系统将自动解析这个索引文件,从而完成地形的加载和显示。 整个文章提供了一个从数据获取、切片制作到地形加载的完整指导流程,对于那些想要深入研究CesiumEarth地形显示技术的开发者来说,文章中提供的信息是必不可少的。通过这些知识,开发者能够更好地利用CesiumEarth构建出精确、细致的三维地形,大大增强了应用程序的真实感和用户体验。 对于软件开发人员而言,了解和掌握CesiumEarth地形切片制作技术不仅能够提升三维可视化项目的质量,而且能够拓宽在GIS和VR领域的应用范围。CesiumLab等工具的使用降低了技术门槛,使得开发者能够更便捷地进行地理数据的处理和三维展示。此外,通过实际操作,开发者还能够加深对地理数据格式、文件存储结构和数据处理流程的认识,从而在更广泛的地理信息系统项目中发挥更大的作用。 在CesiumEarth和其他三维可视化工具的帮助下,开发者得以创建出更加精确和美观的三维模型。这些模型不仅可以用于地理探索,还能够应用于城市规划、环境监测、灾害预警等多个领域。随着技术的进步,三维可视化工具和相关技术的应用场景还在不断扩展,对于开发者来说,深入掌握相关知识和技能显得尤为关键。 随着三维数据可视化技术的不断进步,对于高质量地形数据的需求也日益增长。了解地形切片制作过程,掌握CesiumEarth的使用,对于那些致力于提供高质量三维地图服务和应用的开发者而言,是必不可少的基础技能。通过这些技能,开发者能够为用户提供更加真实、直观的地理信息体验,推动相关技术在教育、科研和商业领域的创新应用。 文章详细介绍了CesiumEarth三维地形切片数据的制作过程,包括了数据的来源、格式、切片工具的使用、操作流程和文件结构的解析,为用户提供了清晰明了的实用指导。这些内容对于准备进入三维可视化领域的开发者具有重要的参考价值,有助于他们更好地理解和掌握地形切片制作的技术细节。
2025-12-05 22:48:03 6KB 软件开发 源码
1
ETOP01全球地形高程数据是地球表面地貌特征的一种精细表示,其精度达到了每分钟1度,也就是大约1.86公里的空间分辨率。这种数据集对于地理信息系统(GIS)、气候研究、海洋学、地质学以及环境科学等领域具有重要价值。 ETOP01是由美国国家地理信息与分析中心(NGDC)发布的,它包含了全球范围内的陆地和海洋的地形高程信息。"etopo1_ice_g_f4.flt"文件是数据主体,通常以浮动点(float)格式存储,用于保存精确的海拔高度数据。这种格式能够容纳较大的数值范围,并且在处理大量数据时能保持较高的计算效率。而"etopo1_ice_g_f4.hdr"文件则是头文件,它包含了关于数据集的元信息,如坐标系统、数据类型、行列数、空间范围等,这对于正确解读和使用FLAT数据文件至关重要。 海洋部分的高程数据涵盖了全球各大洋及海盆的深度,对于海洋学研究来说,可以用于分析水深分布、海洋环流模式以及海底构造特征。例如,通过分析这些数据,科学家可以推断海底山脉的位置、海沟的深度以及板块构造活动的痕迹。 高程数据对于大气科学研究同样重要。在气候模型中,地形高度影响着风向、风速、温度分布以及降水模式。高精度的地形数据可以帮助气象学家更准确地模拟和预测天气现象,比如山地风、山谷风以及风暴路径等。 此外,ETOP01数据也可应用于地理信息系统,结合其他遥感数据,可以创建高分辨率的地形图,用于城市规划、灾害评估、交通路线设计以及自然资源管理等。在环境科学领域,它有助于理解生态系统的分布规律,比如植被类型、水资源分布以及生物多样性。 ETOP01全球地形高程数据是一个强大的资源,其详尽的1分钟分辨率使得它在多个领域都具有广泛的应用。通过解析和利用"etopo1_ice_g_f4.flt"和"etopo1_ice_g_f4.hdr"这两个文件,科研人员和专业人士可以深入探索地球表面的复杂地形特征,从而推动各种领域的科学研究和技术进步。
2025-12-05 22:39:28 363.07MB
1
全球地形1kmDEM(数字高程模型)拼接数据是一个重要的地理信息系统(GIS)资源,它为各种地球科学、环境研究、城市规划、导航、灾害风险评估等领域提供了基础的地形信息。DEM是一种数字形式的地形表示,它用等间距的网格记录地表的高度信息,每个网格点代表一个特定地点的海拔高度。 在提供的压缩包文件中,包含以下几个关键文件: 1. **new.tif**: 这是主要的DEM数据文件,以TIFF(Tagged Image File Format)格式存储。TIFF是一种广泛用于地理空间数据的图像文件格式,能够容纳大量的地理元数据,并且支持多层和色彩深度。在这个案例中,它包含了全球1km分辨率的地形高度信息。 2. **new.tif.ovr**: 这是TIFF文件的覆盖层(Overviews)文件,用于快速访问大尺寸图像。它包含了低分辨率版本的图像,使得在查看或处理大文件时可以提高效率,无需加载整个高分辨率图像。 3. **new.tfw**: 这是TIFF文件的外部世界文件(World File),记录了图像的地理坐标系统信息,包括比例尺、偏移值等,确保图像的像素与实地位置准确对应。 4. **new.tif.xml**: 这是TIFF文件的XML元数据文件,包含了关于图像的详细信息,如投影信息、数据来源、创建日期、分辨率等。这些信息对于正确理解和使用DEM数据至关重要。 5. **new.tif.aux.xml**: 这是GDAL(Geospatial Data Abstraction Library)生成的辅助元数据文件,存储了关于TIFF文件的额外信息,例如图像的边界、未记录在TFW文件中的地理配准信息等。 使用这些数据,用户可以进行以下操作: - **地形分析**:计算坡度、坡向、山谷和山脊线等地形特征。 - **水文分析**:模拟水流动向,分析河流网络、洪水风险等。 - **可视模拟**:生成地形透视图,用于景观规划和设计。 - **气候建模**:地形对气候有显著影响,DEM数据可用于气候模型的输入。 - **GIS集成**:与其他地理数据叠加,进行土地利用规划、交通规划等。 为了处理这些数据,你需要GIS软件,如QGIS、ArcGIS或GRASS GIS,它们提供了导入、查看、分析和导出DEM数据的功能。同时,了解基本的地理坐标系统和投影知识也很重要,因为不同的地理空间数据可能使用不同的坐标参考系统,正确匹配这些系统是确保数据分析准确性的前提。掌握使用命令行工具如gdalinfo和gdal_translate进行数据转换和处理也是有益的。
2025-12-05 22:36:25 406.14MB GIS
1
【标题解析】 本主题涉及的是一个特定类型的地理信息系统(GIS)数据,即"中国区域海底tif格式地形数据"。tif格式,全称Tagged Image File Format,是一种常见的用于存储地理空间信息的图像文件格式,尤其适用于遥感和地形数据。这种数据提供了中国区域内(包括南海)的海洋和陆地的地形高度信息。 【描述分析】 描述中提到,提供的数据不仅包含海底地形,也包括了陆地部分的数据,这表明这份数据集是全面的,涵盖了整个中国的地表特征。"数据是本人通过其它工具导出的"暗示了数据来源可能是经过处理的,可能来自卫星遥感、航空摄影或者其他GIS软件,比如ArcGIS或QGIS。此外,"加载到osgearth中显示还可以"表明这些数据已经在osgEarth这个开源的三维地球可视化软件中进行了验证,可以被成功读取和展示,这意味着数据的格式正确且可用。 【标签解析】 标签"海底地形"明确了数据的主要内容,这部分信息对于海洋研究、航海安全、海洋资源开发以及环境监测等具有重要意义。"dem"是Digital Elevation Model的缩写,即数字高程模型,它是用数字形式表示地面高程的一种方法,常用于地形分析、洪水预测、气候变化研究等领域。"南海"则指出了数据覆盖的具体海域,南海是中国四大海域之一,对中国的海洋权益和环境保护至关重要。 【文件名称列表】 压缩包中的"dem.tif"是核心文件,代表了数字高程模型。此文件包含了中国区域的地理坐标和对应的海拔高度值,每个像素代表了一个地理位置的海拔,通过解析这个文件,用户可以获取到精确的地形信息。 这份资源提供的是中国南海及周边地区的数字高程模型数据,可用于多种用途,如地图制作、环境分析、海洋科学研究等。用户需使用支持tif格式的GIS软件来打开和分析这些数据,例如ArcGIS、QGIS或osgEarth等。在使用时,需要注意数据的精度、投影方式以及单位等信息,以确保正确解读和应用。同时,由于涉及到地理空间数据,使用者还需要遵守相关的法律法规,尊重数据的版权和使用限制。
2025-12-04 23:51:17 363.69MB
1
unity3d T4M地形转换插件 游戏性能优化插件 最新版
2025-11-18 19:38:21 56KB unity3d ios android
1
编译好的CTB,可用于生成HeightMap和Quantized-mesh地形切片,生成Quantized-mesh所需的layer.json,需使用命令 -l ,可参见示例,也可参见github CTB ahuarte47分支https://github.com/ahuarte47/cesium-terrain-builder/tree/master-quantized-mesh //heightmap ctb-tile.exe -o D:\dem\heightmap d:\dem\world-16bit.tif -s 8 -e 0 //quantized-mesh ctb-tile -o D:\dem\globe d:\dem\world-16bit.tif -f Mesh -s 10 -e 0 //生成layer.json ctb-tile -o D:\dem\globe d:\dem\world-16bit.tif -f Mesh -s 10 -e 0 -l
2025-09-30 11:45:23 3.8MB heightmap
1
工具包已包含高清海岸线数据(gshhg)与高清地形数据(etopo1) m_map工具包中m_gshhs.m与m_etopo2.m函数内文件路径已更改完毕 直接将m_map文件夹复制至matlab安装地址内toolbox文件夹下,并在matlab软件中增加m_map文件路径即可使用
2025-09-24 08:23:59 252.34MB matlab m_map
1
测量学是地理信息系统、土木工程、建筑、航空航天等领域不可或缺的基础学科,它涉及到精确地确定地球表面点的位置、形状和大小。本资料集全面涵盖了测量学的多个分支,包括大地测量、地形及工程测量、摄影测量、制图与印刷、测量平差以及常用数学物理公式及常数。以下是对这些知识点的详细阐述: 1. 大地测量:大地测量是研究地球的整体形状、大小和重力场的科学。其中,主要包括大地坐标系统、地球椭球参数、水准测量和GPS全球定位系统等。水准测量用于测定地面点的高程,而GPS则通过卫星信号提供了实时、全球的三维定位能力。 2. 地形及工程测量:这部分涉及在建筑、道路、桥梁等工程项目中的实地测量工作,包括地形图测绘、控制测量、施工放样等。地形图测绘是将地表特征和高程转化为图形,控制测量则是设立基准点,确保所有测量结果的准确,施工放样则根据设计图纸在实地标定建筑物或结构物的位置。 3. 摄影测量:利用航空或航天照片进行测量的技术,包括像片定位、立体观测、数字图像处理等。摄影测量可以快速获取大范围地区的地形信息,广泛应用于城市规划、资源调查和灾害评估等领域。 4. 制图与印刷:地图制作是一门艺术和技术的结合,包括数据采集、地图设计、制图规范等。现代制图借助GIS(地理信息系统)软件,可以创建交互式、多层次的地图。印刷则涉及色彩管理、版面布局和印刷工艺,确保地图的质量和可读性。 5. 测量平差:平差是测量学中解决误差问题的重要方法,通过统计分析和优化理论,消除或减小测量数据中的随机和系统误差。平差理论包括条件平差、间接平差和最小二乘平差等,它们为确保测量结果的精度提供了理论基础。 6. 常用数学物理公式及常数:测量学中涉及大量的数学和物理计算,如三角函数、微积分、矩阵运算以及重力、速度、加速度等物理量的计算。熟悉这些公式和常数对于理解和应用测量原理至关重要。 这个“测量学公式集”PDF文件,无疑是学习和工作中非常实用的工具书,它提供了全面的公式参考,帮助专业人士解决各种测量问题,提升工作效率和精度。无论是初学者还是经验丰富的测量工程师,都能从中受益匪浅。
2025-09-15 10:46:23 1.07MB
1
Small Terrain 是中等高分辨率,基于 heightmap 的地形,渲染出的地形效果 不如 quantized mesh 的地形,但也基本能接受。网上已经有一些开源的生成工具可 以由 DEM 数据生成这种规范的.terrain 文件,本文重点说明这种类型的地形生 成。 地形数据在地理信息系统(GIS)和虚拟现实应用中扮演着重要的角色,特别是在3D地球可视化领域,如Cesium。DEM(数字高程模型)是一种表示地形表面高度信息的数据集,通常以栅格形式存储,每个像素代表地面的一个点的高度值。生成地形数据,特别是将DEM转化为Cesium可使用的terrain文件,涉及多个步骤和技术。 Cesium支持两种类型的地形渲染:STK World Terrain和Small Terrain。STK World Terrain基于quantized mesh技术,提供高分辨率和逼真的渲染效果,适合全球范围内的高精度场景。然而,它的生成过程是封闭的,若要在局域网内部署,需要购买相关服务器软件。而Small Terrain则基于heightmap,虽然在视觉效果上略逊一筹,但仍然满足基本需求,且已经有开源工具可以将DEM数据转换为Cesium兼容的.terrain文件。 生成Small Terrain的详细步骤如下: 1. 获取DEM数据:可以从公开源,如http://srtm.csi.cgiar.org/index.asp获取全球90米分辨率的DEM数据。 2. 安装必备软件:确保所有软件版本一致,避免32位和64位冲突。安装Python 2.7,配置环境变量;安装PIL,用于图像处理;安装GDAL,用于地理空间数据操作;安装Numpy,支持GDAL的计算;再次安装GDAL的Python绑定,用于地形转换。 3. 修改脚本:在T7-gdal2srtmtiles-demo.py中指定输入DEM文件的路径,设置输出目录和级别(例如0-8或0-15),保存修改。 4. 执行转换:通过命令行运行修改后的脚本,将DEM数据转换为Cesium所需的SRTM( Shuttle Radar Topography Mission)瓦片格式,生成的文件包括.terrain、.hdr和.kml,其中.terrain文件是关键。 5. 清理与发布:在生成地形数据前,确保输出目录为空。生成的SRTM瓦片可以发布为地形服务,将terrain_tile文件夹上传至Cesium服务器,或者使用Cesium Ion进行管理。 需要注意的是,整个流程需要对GIS和Cesium有一定的了解,特别是对GDAL库的使用。同时,由于涉及到多个软件的安装和配置,可能会遇到兼容性问题,需要耐心调试。此外,生成的地形级别越高,数据量越大,渲染速度和性能也会受到影响。 通过DEM数据生成Cesium的terrain地形数据,是一项涉及地理空间数据处理、瓦片化、以及3D可视化技术的任务。了解并掌握这个过程对于开发和维护基于Cesium的3D地球应用至关重要。
2025-08-14 16:07:17 551KB
1