本研究深入探讨了猫狗图像分类任务,在模型训练与评估过程中,针对 AlexNet、VGG16 和 ResNet18 三种经典模型进行了全面对比。结果表明,VGG16 表现最佳,ResNet18也具有较好的性能,而 AlexNet 则存在一定的过拟合问题。 研究涵盖了多个方面的工作。数据处理上,我们选择了猫狗图像数据集,并进行了归一化、数据增强与标准化等预处理。模型构建与训练过程中,分别采用了三种经典神经网络架构,每种模型在结构和技术上各具特点。训练时,我们使用了交叉熵损失函数、Adam 优化器以及学习率衰减策略。模型评估与优化阶段,结合多种评估指标与曲线,针对过拟合问题采用了正则化技术,针对欠拟合调整了模型架构和参数,同时通过改进数据增强技术提升了模型的鲁棒性与泛化能力。
2025-06-24 18:34:34 375KB 深度学习 Python 猫狗识别 课程设计
1
随着人工智能技术的快速发展,深度学习在医学图像分析领域展现出巨大的应用潜力。在本项目中,我们关注的是骨龄检测识别系统的开发,该系统基于深度学习框架PyTorch实现,采用Pyside6进行图形用户界面设计,而YOLOv5模型则作为主要的骨龄检测识别算法。YOLOv5是一种先进且快速的对象检测算法,它能够实时高效地识别和定位图像中的多个对象。在本系统的构建过程中,YOLOv5模型将被训练用于识别儿童手腕X光图像中的骨骼特征,并据此推断出相应的骨龄。由于骨龄是评估儿童和青少年生长发育的重要指标,因此该系统在儿科医学诊断中具有重要的应用价值。 在本系统的开发过程中,项目使用了多个文件来维护和说明。其中,CITATION.cff文件用于规范引用格式,以便其他研究者可以准确引用本项目的研究成果。.dockerignore、.gitattributes、.gitignore文件则涉及项目版本控制和容器配置,这些文件用于设置哪些文件应被版本控制系统忽略或特殊处理。tutorial.ipynb文件是一个交互式的Python笔记本,可能包含了使用本系统进行骨龄检测识别的教程或示例代码,这对学习和使用本系统具有实际指导意义。 此外,项目中还包括了一个图片文件555.jpg,虽然具体内容未知,但根据命名推测,它可能被用作YOLOv5模型训练或测试中的样本图像。LICENSE文件包含了本项目所采用的开源许可证信息,它对项目如何被使用、修改和重新分发做了规定。README.zh-CN.md和README.md文件分别为中文和英文版本的项目说明文档,它们提供了关于项目的详细信息和使用指南。CONTRIBUTING.md文件用于指导其他开发者如何为本项目贡献代码,这是开源文化的重要组成部分。 本项目是一个高度集成的系统,它将深度学习、图像识别和友好的用户界面完美结合,为医学影像分析领域提供了一种新颖的解决方案。通过使用YOLOv5模型,系统在骨龄检测方面展现出了高效的性能和准确的识别效果。与此同时,系统的设计充分考虑了实用性、可扩展性和开放性,它不仅能够满足专业人士的需求,同时也为开发者社区提供了一个可供贡献和改进的平台。
2025-06-10 21:39:43 406.37MB python 图像识别 yolo 深度学习
1
基于深度学习的图像识别:猫狗识别 一、项目背景与介绍 图像识别是人工智能(AI)领域的一项关键技术,其核心目标是让计算机具备像人类一样“看”和“理解”图像的能力。借助深度学习、卷积神经网络(CNN)等先进算法,图像识别技术实现了从图像信息的获取到理解的全面提升。近年来,这一技术已在医疗、交通、安防、工业生产等多个领域取得了颠覆性突破,不仅显著提升了社会生产效率,还深刻改变了人们的生活方式。猫狗识别的实际应用场景 该模型由两层卷积层和两层全连接层组成,主要用于图像分类任务。 第一层卷积层: 将输入的224×224×3图像通过3×3卷积核映射为112×112×16的特征图。 第二层卷积层: 将特征图进一步转换为 56×56×32。 池化层: 每层卷积后均接一个2×2的最大池化层,用于减少特征图的空间维度。 全连接层:第一层全连接层将向量映射。 第二层全连接层输出对应类别的概率分布(由 num_classes 决定)。 激活函数:使用ReLU作为激活函数。该模型具备较低的参数量,适用于轻量级图像分类任务。
2025-06-09 12:24:39 416KB 实验报告 深度学习 python
1
在IT领域,尤其是在语音处理和通信技术中,声学回声消除是一项至关重要的技术。它主要应用于音频会议、语音识别、语音增强等场景,目的是消除因声音反射或多个音频源混合产生的回声,以提高语音质量和通信效果。本文将详细探讨基于深度学习的声学回声消除,并结合"精品--基于深度学习的声学回声消除基线代码.zip"这个压缩包中的内容进行分析。 深度学习在声学回声消除中的应用是近年来的一个研究热点。传统的回声消除方法如自适应滤波器(例如NLMS算法)虽然能够处理简单的回声问题,但在复杂环境和多变的声学条件下表现有限。而深度学习模型,如卷积神经网络(CNN)、长短时记忆网络(LSTM)以及门控循环单元(GRU),因其强大的特征学习能力和非线性映射能力,在处理复杂的声学回声问题上展现出优势。 在压缩包中的"ahao2"可能是一个项目文件夹,包含了实现深度学习声学回声消除的代码。这些代码通常包括数据预处理、模型构建、训练、验证和测试等环节。预处理阶段可能涉及到对原始音频信号进行采样率转换、噪声去除、分帧和加窗等操作,以转化为适合深度学习模型输入的形式。模型构建部分,开发者可能采用了上述提到的CNN、LSTM或GRU等结构,设计出能有效捕捉语音和回声特征的网络架构。 在训练过程中,模型会通过反向传播优化损失函数,不断调整权重以达到最小化回声与目标信号的差异。这通常需要大量的带标签数据,包括干净的语音信号和含有回声的混杂信号。验证和测试阶段则用于评估模型的泛化能力,检查在未见过的数据上模型的表现。 此外,该代码可能还包括了回声消除性能的评估指标,如回声消除增益(Echo Cancellation Gain, ECG)、残留回声功率(Residual Echo Power, REP)和双讲抑制(Double-Talk Detection, DTD)。这些指标可以帮助我们理解模型在不同条件下的性能,并进行模型调优。 "精品--基于深度学习的声学回声消除基线代码.zip"提供了深入研究和实践深度学习声学回声消除的平台。开发者可以在此基础上进行模型改进,比如引入更复杂的网络结构、优化算法或者联合训练多个任务来提升整体性能。对于初学者来说,这是一个很好的起点,可以了解并掌握深度学习在声学回声消除中的应用。同时,对于专业人士,这样的基线代码可以作为基准,对比和评估自己的创新成果。
2025-06-04 13:57:09 2.66MB
1
"深度学习YOLOv8+Pyqt5联合打造实时吸烟行为检测系统:完整源码+数据集+详细说明,助力禁烟政策执行",基于深度学习YOLOv8与Pyqt5集成,全方位公共场所抽烟检测与识别系统,附带全套源码及详细指南——轻松构建、跑通与定制升级,基于深度学习YOLOv8+Pyqt5抽烟吸烟检测识别 将获得完整源码+数据集+源码说明+配置跑通说明 可以额外付费远程操作跑通程序、定制其他课题 支持图片、视频、摄像头检测 在现代社会,公共场所的禁烟政策越来越严格,以减少二手烟对非吸烟者的影响。 然而,监管和执行这些政策仍然面临挑战。 本文提出了一种基于YOLOv8(You Only Look Once version 8)的抽烟检测系统,该系统结合了深度学习技术和PyQt5图形用户界面框架,旨在实时监测并识别公共场所中的吸烟行为。 该系统的设计考虑了实时性、准确性和用户友好性,为提高公共场所的空气质量和遵守禁烟规定提供了。 ,基于深度学习; YOLOv8; Pyqt5; 抽烟检测识别; 完整源码; 数据集; 配置跑通说明; 远程操作; 定制课题; 图片/视频/摄像头检测; 禁烟政策; 实时监测;
2025-05-28 15:49:00 1.91MB csrf
1
基于深度学习网络的5G通信链路信道估计算法
2025-05-19 14:08:05 34.83MB AI
1
本文档详细介绍了基于深度学习的新能源汽车驱动电机故障诊断系统的开发流程和技术细节。主要内容涵盖数据采集与预处理、特征提取、模型构建与优化以及系统集成四个阶段。具体步骤包括对振动信号进行去噪和归一化处理,利用卷积神经网络(CNN)自动提取故障特征,构建并优化故障诊断模型,最终将其集成到车辆的驱动电机监控系统中,实现故障的实时诊断与预警。此外,还涉及了调查研究、开题报告、方案论证、设计计算、手绘草图、计算机绘图等工作内容,并制定了详细的工作进度计划。 适合人群:从事新能源汽车行业、机电一体化、自动化控制等领域研究的技术人员和高校相关专业的高年级本科生或研究生。 使用场景及目标:适用于需要对新能源汽车驱动电机进行故障检测和预防维护的应用场合。目标是提高电机运行的安全性和可靠性,减少因故障导致的停机时间,提升用户体验。 建议读者先了解深度学习基础知识和电机工作原理,再深入学习本文档的具体实施方法和技术细节。同时,可以参考提供的参考资料进一步扩展知识面。
1
基于深度学习的机器人抓取位姿检测模型,GRCN网络,IROS2020开源的网络复现完整代码。
2025-05-17 22:26:59 309.16MB 机器人抓取 深度学习
1
《验证码识别系统Python》,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称
2025-05-14 15:32:44 2KB 深度学习
1
在现代金融科技领域,基于深度学习的银行卡识别系统已经成为自动化服务中的关键组成部分。这种系统通过高效地识别银行卡上的关键信息,如卡号、持卡人姓名、有效期和安全码,极大地提升了银行服务的效率和用户体验。以下是对这个主题的详细探讨。 深度学习是一种模仿人脑神经网络结构的机器学习技术,它在图像识别、自然语言处理等领域表现出了卓越的能力。在银行卡识别系统中,深度学习通常用于以下几个方面: 1. **图像预处理**:系统需要接收并处理来自用户上传的银行卡图片。这包括调整图像大小、灰度化、二值化等步骤,以便提高后续模型的识别效果。二值化能将图像简化为黑白两色,便于计算机识别边缘和文字。 2. **文本定位(OCR)**:接着,深度学习模型如R-CNN、YOLO或 Faster R-CNN等被用于对象检测,定位银行卡上的特定区域,例如卡号、持卡人姓名等字段的位置。这些模型能够对图像进行分割,识别出各个独立的文字元素。 3. **字符识别**:一旦确定了文本位置,另一个深度学习模型如CTC(Connectionist Temporal Classification)或CRNN(Convolutional Recurrent Neural Network)会进行字符识别。这些模型可以处理不同形状和角度的字符,即使它们在图像中是扭曲或部分遮挡的。 4. **信息提取与验证**:识别出的字符将被组合成完整的银行卡信息,如卡号。系统还会通过与银行数据库进行比对,验证这些信息的有效性,确保安全。 5. **异常检测**:深度学习还可以用于检测异常情况,如模糊图像、遮挡物或非银行卡图像。异常检测模型可以帮助系统过滤掉无效输入,提高整体系统的准确性和稳定性。 6. **模型训练与优化**:为了提高银行卡识别的准确性,深度学习模型需要大量的标注数据进行训练。这包括带有正确标签的银行卡图像,以及对应的识别结果。通过不断迭代和优化,模型性能可以逐渐提升。 7. **实时性与部署**:在实际应用中,银行卡识别系统需要具备实时处理能力,这意味着模型需要足够轻量化以适应移动设备或云端服务器的运行环境。模型压缩和量化技术如知识蒸馏和低精度计算可以降低模型复杂度,同时保持识别精度。 8. **隐私保护**:考虑到银行卡信息的敏感性,系统必须遵循严格的安全标准,如数据加密、权限控制以及符合GDPR等法规。深度学习模型的设计和实现也应考虑隐私保护策略,如差分隐私。 基于深度学习的银行卡识别系统是金融科技领域的一个重要进步,它依赖于强大的图像识别和文本处理技术。随着技术的不断发展,我们可以期待更智能、更安全的自动银行卡识别解决方案。
2025-05-14 12:47:11 65KB
1