超声波流量计因为具有不接触被测介质等优点,已经被不断研究并应用在许多领域,发挥了巨大的作用。设计了基于DSP,以多普勒效应为原理的超声波流量计,完成了硬件设计和软件设计。最后对FIR数字滤波器和FFT算法进行了仿真,证明了方案的可行性。
2025-09-16 11:22:22 708KB 多普勒效应 DSP
1
基于DSP TMS320F28335的Matlab Simulink嵌入式模型:自动生成CCS工程代码实现永磁同步电机双闭环控制,基于Matlab Simulink开发的TMS320F28335芯片嵌入式模型:自动生成CCS代码实现永磁同步电机双闭环矢量控制,主控芯片dsp tms320f28335,基于Matlab Simulink开发的嵌入式模型,模型可自动生成ccs工程代码,生成的代码可直接运行在主控芯片中。 该模型利用id=0的矢量控制,实现了永磁同步电机的速度电流双闭环控制。 ,主控芯片:DSP TMS320F28335; 嵌入式模型; 自动生成CCS工程代码; 速度电流双闭环控制; 矢量控制ID=0。,基于TMS320F28335的DSP模型:PMSM双闭环控制与自动代码生成
2025-09-05 09:14:50 793KB rpc
1
弹光调制干涉具中光程差的非线性带来了干涉信号的非均匀变化,在光谱复原过程中,如不对干涉数据修正直接采用快速傅里叶变换(FFT)复原光谱会导致光谱严重失真,难以满足实时处理要求。首先提出采用非均匀快速傅里叶变换算法(NUFFT)实现光谱复原,其次设计了一种基于高性能DSP芯片OMAP-L138的干涉数据处理系统,它将高速数据采集卡PCI-5122采集到的671.1nm激光干涉数据进行存储并完成其实时光谱复原。研究结果表明:这套干涉数据实时处理系统操作简单,运行可靠。复原671.1nm激光的波长误差小于1nm,谱线位置误差小于0.1%,为后期采用高性能DSP的弹光调制傅里叶变换光谱仪提供了很好的前...
2025-08-20 15:30:22 767KB 数字信号处理器;
1
 随着电力电子技术的迅猛发展,电力系统中非线性负荷大量增加,各种非线性和时变性电子装置如逆变器、整流器及各种开关电源的应用越来越广泛,由此带来的谐波和无功问题日益严重。本文主要介绍基于DSP并联有源电力滤波器的研究。 【基于DSP并联有源电力滤波器的研究】 随着电力电子技术的发展,非线性负荷在电力系统中不断增加,导致谐波和无功问题日益严重。有源电力滤波器(APF)作为一种有效的解决方案,可以抑制谐波、补偿无功,改善电网质量。本文主要探讨基于数字信号处理器(DSP)的并联型有源电力滤波器的设计与应用。 1. 工作原理 有源电力滤波器系统主要由两部分组成:指令电流运算电路和补偿电流发生电路。指令电流运算电路负责检测谐波和无功电流,并计算出补偿指令。补偿电流发生电路则根据指令生成补偿电流,与负载电流中的谐波和无功成分相抵消,实现电网电流的净化。这个过程通过实时检测电网电压和电流,利用PWM变流器产生逆变电流,确保补偿电流与目标谐波和无功电流相等但相位相反,从而实现谐波抑制和无功补偿。 2. 硬件电路设计 硬件电路包括DSP控制芯片、D/A和A/D转换器、采样周期信号发生器、电流检测调理电路、三角波比较电路、驱动电路以及直流侧电压控制与均压电路。DSP负责运算指令电流,电流和电压传感器用于检测负载和直流侧状态,驱动电路则根据DSP产生的PWM信号控制主电路的开关器件,以跟踪指令电流。 3. 软件设计 软件设计的关键在于保证实时性和精度。系统在一个采样周期内完成数据采集、谐波和无功电流计算以及PWM信号生成。主程序、A/D转换子程序、谐波和无功电流计算子程序、PWM输出子程序和串行通信子程序协同工作,确保整个系统高效运行。 4. 实验结果与分析 实验结果表明,所设计的基于DSP的并联型有源电力滤波器能有效补偿谐波和无功电流。补偿前后的电流波形和频谱对比显示,加入APF后,电源电流波形显著改善,谐波畸变率大幅降低,验证了设计的正确性和算法的有效性。 5. 结论 本文通过深入研究并联有源电力滤波器的原理、硬件设计和软件控制,证实了基于DSP的APF在抑制谐波和补偿无功方面的优秀性能。这种滤波器克服了传统无源电力滤波器的局限,具有高度可控性和快速响应性,对于保障电力系统的稳定性和提高能源效率具有重要意义。未来的研究可以进一步优化硬件设计,提升控制策略的智能化水平,以适应更复杂的电力系统环境。
2025-08-01 15:45:16 215KB DSP并联 有源电力滤波器 电子竞赛
1
DSP C2000系列主控CLLC谐振电源方案的MBD框架程序:Matlab仿真生成硬件控制代码,快速验证与调试参考,适用于多种电源产品设计,独立编译,便捷下载进芯片。,基于DSP C2000系列主控的CLLC谐振电源MBD框架程序:Matlab仿真生成硬件控制代码方案,支持快速验证与自主设计平台适应调整。,DSP C2000系列主控CLLC谐振电源方案MBD框架程序。 此文件matlab2021仿真生成硬件控制代码方案。 可用于迅速验证。 采用2021版本分析和导出硬件系统实现代码,开发为初版, 硬件系统调试参考: *已进行Ti样板硬件系统匹配。 *采用图为和国电赛斯实际双向电源产品修改部分关键功率件后做了测试。 (此部分工作量比较大) *也可以自己改端口和数控参数再重新生成适应自己的设计平台。 为母版程序。 此文件不依赖CCS编辑编译,可直接用uniflash工具将out文件下载进芯片。 ,DSP; C2000系列主控; CLLC谐振电源方案; MBD框架程序; matlab2021仿真; 硬件控制代码; 迅速验证; 2021版本; 硬件系统实现代码; 初版; Ti样板硬件匹配
2025-07-02 13:12:50 832KB xbox
1
内容概要:本文详细介绍了基于DSP C2000系列主控的CLLC谐振电源方案MBD框架程序的开发与优化调试方法。主要内容包括:利用MATLAB 2021仿真生成硬件控制代码,实现快速验证和硬件系统的实现;提供具体的状态机核心代码、ADC采样点配置、模式切换缓冲机制以及PID控制器的手动调优方法。文中还特别提到了一些实际应用中的注意事项,如移相阈值设定、PWM时钟分频系数调整、JTAG保护关闭等。 适合人群:从事电力电子、嵌入式系统开发的技术人员,尤其是那些正在研究CLLC谐振电源方案并希望提高开发效率的人群。 使用场景及目标:① 快速验证CLLC谐振电源设计方案;② 实现高效、稳定的硬件控制系统;③ 掌握MBD框架程序的具体实现细节和技术要点;④ 避免常见错误,确保系统稳定运行。 其他说明:本文不仅提供了理论指导,还结合了大量实际案例和调试经验,帮助开发者更好地理解和应用相关技术。
2025-07-02 13:12:34 367KB DSP 嵌入式系统
1
为了降低飞行设备的安全事故,提高飞行设备的安全性和可靠性,研究实现了一种基于DSP的振动信号采集系统。该系统利用中断嵌套中断技术实现八通道两种采样率的采样,利用4项5阶Nuttall窗FFT算法实现了对数据的分析处理。实际测试结果表明,该系统的振动信号幅值误差小于0.3%,频率误差小于4%,到达了预期的设计要求。
2025-06-04 19:39:57 1.46MB DSP;
1
摘    要:本文主要介绍了基于DSP实现的PWM整流回馈系统的设计。该设计可以做到输入电流正弦、单位功率因数、直流母线电压输出稳定,具有良好的动态性能并可实现能量的双向流动(即四象限运行),最终给出实验波形,验证了系统的可行性。   1 引言   随着电网谐波污染问题的日益严重和人们对高性能电力传动技术的需要,人们对PWM整流技术给予了越来越多的关注。PWM整流器可以做到输入电流正弦、单位功率因数、直流电压输出稳定,具有良好的动态性能并可实现能量的双向流功,也就能够实现系统的四象限运行,即快速制动和能量回馈。与传统的整流器(即不控整流或相控整流)相比,具有很多优点。本文主要通过系统方案的
2025-04-21 17:53:16 267KB 单片机与DSP
1
空间矢量脉宽调制(SVPWM)是控制交流异步电动机的一种控制方式。SVPWM技术应用于交流调速系统中不但改善了脉宽调制(PWM)技术存在电压利用率偏低的缺点,而且具有转矩脉动小、噪声低等优点。给出了一个以TMS320LF2407A型DSP芯片为控制电路核心的异步电机SVPWM矢量控制调速系统,对其硬软件设计进行了分析,并利用MATLAB/Simulink软件对该调速系统进行了仿真。仿真结果表明,该调速系统动、静态性能优良,控制效果较好。 【基于DSP的空间电压矢量控制调速系统设计与实现】 空间电压矢量控制(SVPWM)是一种先进的交流异步电机调速技术,它通过精确地控制逆变器的开关状态来实现对电机的高效控制。相较于传统的脉宽调制(PWM)技术,SVPWM在提高电压利用率的同时,还能显著减小转矩脉动和降低运行噪音,从而改善电机的运行性能。 在SVPWM中,逆变器的六个非零电压空间矢量分别代表60°相位差的电压状态,加上两个零矢量,共构成8个基本矢量。这些矢量在空间上的分布形成了一个均匀的扇形,使得电机的电压控制更为精细和灵活。通过优化选择和切换这些矢量,可以实现更接近正弦波形的电机端电压,从而降低谐波影响,提高系统效率。 本设计采用TMS320LF2407A型数字信号处理器(DSP)作为控制电路的核心,该芯片以其高速处理能力和强大的计算能力,能够实时处理SVPWM所需的复杂计算任务。硬件设计包括DSP与电机驱动电路的接口、传感器接口以及电源管理等部分,确保了系统的稳定性和可靠性。软件设计则涉及电机模型建立、控制算法实现和实时控制策略的编程,包括矢量分解、电流环和速度环的控制算法等。 为了验证系统性能,利用MATLAB/Simulink工具进行了仿真。仿真结果证实了该调速系统的动态和静态特性良好,无论是快速响应还是稳态运行,都能达到预期的控制效果。这表明基于DSP的SVPWM矢量控制系统具有很高的实用价值,适用于需要高精度、高性能的电机调速应用。 此外,虽然文章并未直接提及,但可以从标签“ANPC 五电平”和“DTC 策略”中关联到相关知识。ANPC(Active Neutral Point Clamped)五电平拓扑结构可以提供更平滑的电压输出,减少电压阶跃,从而提升高压变频系统的稳定性。直接转矩控制(DTC)策略则通过对电机转矩和磁链的直接控制,实现了快速动态响应,提高了系统性能。 总结来说,基于DSP的空间电压矢量控制调速系统通过优化的电压矢量分配和高效的DSP处理,实现了交流异步电机的高性能调速。这种技术在提升电机控制的精度和效率方面具有显著优势,广泛应用于工业自动化、电力传动等多个领域。结合ANPC五电平拓扑和DTC策略,可以进一步优化电机的运行性能,满足对高压变频和动态响应的苛刻要求。
2025-03-30 12:56:45 725KB SVPWM 矢量控制 DSP
1
**基于DSP F2812的DS18B20温度测量系统详解** 在嵌入式系统设计中,实时温度监测是一项重要的功能,特别是在工业控制、环境监控以及智能家居等领域。本篇文章将深入探讨如何在德州仪器(TI)的TMS320F2812数字信号处理器(DSP)上实现DS18B20数字温度传感器的数据读取和处理,以构建一个高效的温度测量系统。 **一、TMS320F2812 DSP简介** TMS320F2812是一款高性能、低功耗的C28x DSP,具备高速浮点运算能力,适用于实时控制应用。它内含丰富的外设接口,如SPI、I2C、UART等,能够方便地与各种传感器和外部设备通信。 **二、DS18B20概述** DS18B20是达拉斯半导体(现 Maxim Integrated)生产的一款单线数字温度传感器,具有高精度(±0.5°C)和宽工作电压范围(3.0V~5.5V)。它使用单总线协议,仅需一根数据线即可完成电源供应、数据传输和地址识别,大大简化了硬件连接。 **三、DS18B20与F2812的接口** 1. **单总线通信**:DS18B20的通信协议基于单总线,F2812需要配置相应的GPIO引脚作为单线接口。通过拉低和释放数据线实现数据的发送和接收。 2. **初始化和寻址**:每个DS18B20都有唯一的64位序列号,用于在总线上区分多个设备。在F2812上,需发送特定的指令序列来初始化DS18B20并寻址特定的设备。 3. **温度转换**:发送转换命令后,DS18B20将开始测量温度,并在完成时通过单总线返回结果。 **四、DS18B20温度测量流程** 1. **电源管理**:DS18B20可以从数据线上获取电源,因此在F2812的GPIO配置中,需要设置适当的上拉电阻以提供电源。 2. **设备初始化**:向DS18B20发送复位脉冲,然后进行ROM操作,以识别设备并设置工作模式。 3. **温度转换**:发送“开始温度转换”命令,等待一定时间(约750ms)后,DS18B20完成温度测量。 4. **数据读取**:读取DS18B20返回的16位温度数据,包括9位温度值和7位校验位。 **五、软件实现** 在F2812上,需要编写驱动程序来模拟单总线协议。这通常涉及精确的延时控制、数据线的拉低和释放以及异常处理。软件流程包括: 1. 初始化GPIO,设置为推挽输出。 2. 发送复位脉冲,检查响应以确认DS18B20存在。 3. 通过单总线发送ROM操作,如读取序列号、配置寄存器等。 4. 发送温度转换命令,等待转换完成。 5. 按照单总线协议读取温度数据,并进行校验。 6. 解析温度值,转换为摄氏度或华氏度显示。 **六、优化与拓展** 1. **多传感器支持**:通过轮询或中断方式,可以同时管理多个DS18B20,实现分布式温度监控。 2. **误差校正**:根据DS18B20的特性,可能需要进行非线性校正以提高测量精度。 3. **实时数据处理**:结合F2812的实时处理能力,可实现温度阈值检测、报警等功能。 利用TMS320F2812 DSP和DS18B20传感器,我们可以构建一个简单但功能强大的温度监测系统。通过理解单总线通信协议,以及F2812的GPIO和中断管理,开发者可以进一步优化系统性能,满足不同应用场景的需求。
2025-03-29 11:51:52 278KB F2812 DS18B20
1