内容概要:本文详细介绍了无人机航迹规划(UAV)和多无人机航迹规划(MUAV)的基本概念及其在Matlab中的实现方法。首先概述了无人机航迹规划的重要性和应用场景,如军事侦察、环境监测、航拍摄影和快递配送等。接着分别讲解了基于图论和基于采样的两种主要航迹规划算法,前者通过将飞行环境抽象成图模型寻找最优路径,后者则利用随机采样生成可行路径。针对多无人机系统,文中强调了协同作业的需求及其带来的额外挑战。最后给出了一个简化的Matlab代码示例,演示了如何使用基于采样的方法完成单无人机的航迹规划。 适合人群:对无人机技术和Matlab编程有一定了解的研究人员和技术爱好者。 使用场景及目标:适用于希望深入了解无人机航迹规划理论及其具体实现方式的学习者;旨在帮助读者掌握不同类型的航迹规划算法,并能够在Matlab环境下进行实验验证。 其他说明:本文不仅提供了理论知识,还附有具体的代码实例,有助于读者更好地理解和实践相关算法。
2026-01-26 21:52:04 539KB
1
内容概要:本文研究基于深度强化学习的多无人机辅助边缘计算网络路径规划,旨在通过深度强化学习技术优化多无人机在复杂环境下的飞行路径,以提升边缘计算网络的服务效率与资源利用率。文中结合Matlab代码实现,详细探讨了多无人机协同工作的路径规划模型,涵盖任务分配、避障、能耗优化等关键问题,有效支持边缘计算场景下的低延迟、高可靠通信需求。; 适合人群:具备一定编程基础和无人机、边缘计算或强化学习背景的科研人员及研究生;适用于从事智能优化、路径规划或网络资源调度相关方向的研究者。; 【无人机路径规划】基于深度强化学习的多无人机辅助边缘计算网络路径规划(Matlab代码实现) 使用场景及目标:①解决多无人机在动态环境中高效执行边缘计算任务的路径规划问题;②探索深度强化学习在复杂多智能体系统协同控制中的实际应用;③为边缘计算网络提供低延迟、高稳定性的无人机辅助通信方案。; 阅读建议:建议结合提供的Matlab代码进行实践,重点关注算法模型的设计思路与仿真实验设置,深入理解深度强化学习在路径规划中的训练机制与优化策略。
1
内容概要:本文介绍了基于Matlab实现的无人机在时变风环境下路径跟随策略的模拟研究,重点探讨了无人机在动态风场干扰下的轨迹跟踪控制方法。通过建立无人机动力学模型与时变风场模型,结合控制算法实现对期望路径的精确跟随,并利用Matlab进行仿真验证,分析无人机在不同风扰条件下的响应特性与控制性能。该研究对于提升无人机在复杂气象环境中的飞行稳定性与任务执行能力具有重要意义。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校研究生、科研人员及从事无人机控制系统开发的工程技术人员。; 使用场景及目标:①研究无人机在真实气象环境下的路径跟踪控制策略;②开发抗干扰能力强的飞行控制系统;③通过仿真验证控制算法的有效性与鲁棒性; 阅读建议:建议读者结合Matlab代码深入理解仿真流程,重点关注风场建模与控制器设计部分,可在此基础上扩展其他先进控制算法(如自适应控制、滑模控制)进行对比研究。
1
《基于VR-Forces仿真平台的多无人机协同任务规划仿真系统》 在现代科技领域,无人机(Unmanned Aerial Vehicles, UAVs)的应用日益广泛,涵盖了军事、民用等多个领域。随着无人机技术的发展,如何有效地进行多无人机协同任务规划成为了一个重要的研究课题。VR-Forces作为一款强大的三维虚拟现实仿真平台,为实现这一目标提供了理想的解决方案。 VR-Forces是由VBS(Virtual Battlespace)系列软件开发商 Bohemia Interactive Simulations 开发的一款高级仿真软件,它集成了复杂的物理模型、网络通信和任务规划功能,能够模拟各种作战环境和场景,为多无人机协同任务的仿真提供了坚实的基础。 多无人机协同任务规划主要涉及以下几个关键知识点: 1. **协同决策与任务分配**:在多无人机系统中,如何高效地分配任务、避免冲突、确保任务完成效率是核心问题。这需要建立一套智能决策算法,例如基于遗传算法或粒子群优化的任务分配策略,以实现无人机间的最优协同。 2. **通信网络建模**:无人机之间的通信网络是协同作业的神经网络,需考虑信道质量、传输距离、干扰等因素。在VR-Forces中,可以模拟真实的无线通信环境,评估不同通信协议对任务执行的影响。 3. **路径规划与避障**:每个无人机需要有独立的路径规划能力,同时能实时调整路线以避开障碍物。A*算法、Dijkstra算法等路径规划方法在此场景中有广泛应用,结合SLAM(Simultaneous Localization and Mapping)技术,能实现自主导航和避障。 4. **虚拟现实环境**:VR-Forces提供高逼真的3D环境,使得无人机操作者能在近似真实的环境中进行任务规划和训练,提高任务执行的准确性和安全性。 5. **仿真与验证**:通过VR-Forces平台,可模拟各种复杂环境和紧急情况,测试多无人机系统的应对策略,及时发现并修正潜在问题,提升系统的稳定性和可靠性。 6. **实时监控与控制**:无人机任务执行过程中,需要实时监控无人机状态和任务进度,确保任务按照预设计划进行。VR-Forces支持实时数据交互和可视化监控,为指挥员提供了直观的决策支持。 7. **安全性与隐私保护**:在多无人机协同任务中,数据安全和隐私保护同样重要。必须采取加密措施,防止数据泄露,同时设计防干扰和抗破解的通信机制。 通过VR-Forces平台,我们可以构建一个全面的多无人机协同任务规划仿真系统,对各个关键技术进行深入研究和验证,为实际应用提供理论支持和技术储备。这种仿真系统的应用不仅可以优化无人机的任务执行,还可以在培训、测试和战术规划等方面发挥巨大作用。
2024-07-15 17:37:45 917KB
1
人工智人-家居设计-高阶线性多智能体时延一致性理论及其在多无人机协同控制中的应用.pdf
2022-07-08 10:02:50 1.57MB 人工智人-家居
【路径规划】考虑分配次序的多无人机协同目标分配建模与遗传算法求解
2022-05-14 19:28:59 14KB
1
无人机协同目标的多无人机协同搜索方法
2021-12-14 19:02:31 601KB 研究论文
1
【路径规划】基于改进差分实现三维多无人机协同航迹规划matlab源码.zip
2021-11-02 18:37:05 1.02MB 简介
1
具有时间约束的多无人机协同航迹控制研究
2021-10-30 15:44:20 1.01MB 研究论文
1
面向矩形区域的多无人机协同覆盖路径规划算法,吴巍炜,刘海龙,无人机广泛的应用于各个领域,其面临的主要限制在于能耗和通信距离。为了解决日渐复杂的任务,无人机通过组成编队相互协同的方式
2021-10-22 17:16:11 598KB 算法理论
1