课件 OFDM系统的一个重要优点就是可以利用快速傅里叶变换实现调制和解调。从而可以大大简化系统实现的复杂度。本小节将简述其原理。
2026-01-28 12:18:54 1.72MB OFDM
1
多载波技术,也称为OFDM(Orthogonal Frequency Division Multiplexing),是现代通信系统中的一种重要调制技术,尤其在无线通信领域如4G、5G和Wi-Fi网络中广泛应用。这种技术通过将高速数据流分解为多个较低速率的数据流,并在多个正交子载波上进行传输,从而实现高效利用频谱资源和增强抗干扰能力。 **1. 多载波技术的基本原理** 多载波技术的核心是将宽带信号分解为多个窄带子载波,每个子载波独立调制数据。这些子载波间的频率间隔是精确设计的,使得它们相互正交,即一个子载波的信号不会对其他子载波产生干扰。正交性使得在接收端可以简单地通过滤波器分离各个子载波,从而实现数据的解调。 **2. OFDM的优势** - **频谱效率高**:由于每个子载波携带的信息量较小,可以充分利用频谱资源,尤其是在频率选择性衰落的信道中,能够更好地利用可用带宽。 - **抗多径干扰**:多载波技术对多径传播的容忍度较高,因为不同路径的信号会在不同的子载波上相消干涉,减少了符号间干扰(ISI)。 - **灵活的带宽分配**:可以根据实际需求动态分配子载波,适应不同速率的服务。 - **易于实现**:OFDM系统的调制和解调相对简单,主要通过快速傅里叶变换(FFT/IFFT)实现。 **3. OFDM的关键技术** - **预编码**:为了减少多径传播造成的衰落,通常采用预编码技术,如循环前缀(CP)来消除符号间的干扰。 - **功率分配**:根据信道状态信息,可以优化子载波的功率分配,提高系统性能。 - **信道估计**:准确的信道估计是OFDM系统正常工作的重要前提,通过训练序列来获取信道状态信息。 - **同步**:精确的时间和频率同步对于保持子载波间的正交性至关重要。 **4. 多载波技术的应用** - **4G/5G移动通信**:LTE和5G NR网络都采用了OFDM作为下行链路的主要调制方式,提供高速数据传输。 - **固定宽带无线接入**:如WiMax,用于城市无线宽带接入。 - **Wi-Fi**:802.11a/g/n/ac/ax标准均采用了OFDM,不断提高无线局域网的数据传输速度。 - **有线电视网络**:DOCSIS(Data Over Cable Service Interface Specification)标准也应用了多载波技术。 **5. 多载波技术的挑战** 尽管多载波技术有诸多优点,但也存在一些挑战,如: - **峰均功率比(PAPR)问题**:OFDM信号的瞬时功率可能远高于平均功率,这可能导致功率放大器的非线性失真。 - **灵敏度对频率偏差敏感**:即使微小的频率偏差也会导致子载波间的正交性破坏,影响系统性能。 - **同步要求严格**:时间和频率的同步需要精确,否则会降低解调性能。 多载波技术是一种高效的通信手段,其理论基础、实现方法以及在现代通信系统中的应用都是深入学习和理解的重点。通过“重邮内部课件”这样的资料,可以深入探讨这些主题,结合丰富的图表和数据,能更好地掌握这一关键技术。
2026-01-26 15:29:38 4.93MB
1
5G通信是当前通信技术发展的焦点,而FBMC(Filter Bank Multi-Carrier,滤波器组多载波)技术作为5G通信中的核心技术之一,具有超越传统OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术的潜力。FBMC技术起源于20世纪70年代,但在当时由于实现上的复杂性,并没有受到广泛关注。直至90年代随着数字信号处理技术的发展,特别是快速傅立叶变换和大规模集成电路的出现,FBMC技术开始得到广泛应用。其在多载波调制、信号处理、图像编码压缩等领域均有着重要的应用。 在5G通信中,频谱资源的有效利用是关键问题之一。由于某些频段难以获得连续的宽带资源,而存在一些不连续的频谱资源(空白频谱),传统OFDM技术难以高效利用这些频谱。相比之下,FBMC技术以其在频域上将带宽划分为多个子带的特点,能够在不同子带间实现灵活的频率使用,从而有效利用这些不连续的频谱资源。 OFDM技术虽具有一些优势,例如在载波之间具有正交性,能够有效抵御窄带干扰和频率选择性衰落,但它也存在局限性。例如,其滤波方式为矩形窗滤波,需要插入循环前缀以对抗多径衰落,这导致无线资源的浪费和数据传输速度下降。OFDM信号的旁瓣较大,在载波同步不能保证的情况下,会增加相邻载波之间的干扰。这些问题使得OFDM技术在频谱利用率和系统可靠性方面存在不足。 为了应对这些问题,FBMC技术引入了多相位分解和余弦调制滤波器组等创新设计,可以提供完全重构的能力,减少了混迭和相位失真。此外,FBMC技术能够通过灵活地对信号进行频率分集,增强通信的可靠性。这些特性使FBMC技术在面对多径衰落和频率选择性衰落时,能够提供更为鲁棒的解决方案。 FBMC技术的发展历史表明,它在通信信号处理领域的应用范围从最初的语音处理逐步扩展到图像编码压缩、自适应滤波、雷达信号处理等多个领域。随着理论的完善和技术的进步,FBMC技术在5G通信中的应用前景被广泛看好,有望实现更加高效的频谱利用和更高的数据传输速率。 FBMC技术的优势在于能够更加灵活地适应复杂的通信环境,提供更高的频谱利用率和降低系统峰均比。相比于OFDM,FBMC可以更有效地处理频谱资源的非连续性问题,这对于5G通信系统设计来说,具有非常重要的意义。随着5G网络的不断部署和优化,FBMC技术将作为关键技术之一,为未来无线通信的发展做出重要贡献。
2026-01-26 15:29:17 424KB
1
在通信领域,调制技术是传输信息的关键环节。LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款由美国国家仪器公司(NI)开发的图形化编程环境,广泛应用于测试、测量和控制系统的设计。在这个主题中,我们将深入探讨如何利用LabVIEW实现各种经典的通信方案,包括PSK(Phase Shift Keying,相移键控)、FSK(Frequency Shift Keying,频率移键控)、单载波调制和多载波调制。 我们来看PSK。PSK是一种模拟调制技术,通过改变载波信号的相位来传输数字信息。在LabVIEW中,我们可以创建一个虚拟仪器来模拟PSK调制过程。这通常涉及到生成一个正弦波作为载波,然后根据输入的数据改变其相位。常见的PSK类型有BPSK(Binary Phase Shift Keying,二进制相移键控)、QPSK(Quadrature Phase Shift Keying,四相相移键控)等。在LabVIEW中,我们可以使用数学函数和逻辑运算来实现这些算法,并通过图形化界面展示调制结果。 接着,我们讨论FSK。与PSK不同,FSK是通过改变载波的频率来传输数据。LabVIEW提供了丰富的信号处理函数库,可以方便地实现FSK调制器和解调器。例如,通过生成两个不同频率的正弦波并根据输入比特选择其中之一,就能实现BFSK(Binary Frequency Shift Keying,二进制频率移键控)。对于更复杂的MSK(Minimum Shift Keying,最小移频键控)等高级形式,LabVIEW也能提供相应的工具和技术。 单载波调制,如AM(Amplitude Modulation,幅度调制)和FM(Frequency Modulation,频率调制),在无线通信中非常常见。在LabVIEW中,可以利用调制/解调VI(Virtual Instrument)来实现这些功能。例如,AM可以通过乘法器将信息信号与载波相乘得到,而FM则需要利用非线性函数如希尔伯特变换来实现。这些调制方式在LabVIEW中的实现,通常涉及信号合成、滤波以及信号分析。 多载波调制,如OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用),在现代高速通信系统如Wi-Fi和4G/5G网络中至关重要。在LabVIEW中,实现OFDM需要进行IFFT(快速傅里叶逆变换)和FFT(快速傅里叶变换)操作,以及添加循环前缀以克服多径传播引起的符号间干扰。此外,还需要处理子载波分配、星座映射和同步问题。 LabVIEW的灵活性和强大的数据处理能力使得它成为实现通信方案的理想平台。通过组合和自定义各种函数,用户可以构建出复杂且高效的通信系统模型,用于教学、研究或实际工程应用。同时,LabVIEW的可视化特性使得整个设计过程更加直观,有助于理解和调试通信系统的工作原理。在"Communication"这个文件夹中,很可能包含了实现这些通信方案的详细步骤和实例代码,供学习者参考和实践。
2025-05-21 10:32:22 12.06MB labview 通信方案
1
(6) 静止无功补偿器数据 静止无功补偿器数据修改界面如图 4-6 所示。其中可修改的内容包括: 静补类型: 1:可控硅(Thyristor)静补 2:自饱和式(Self-Saturate)静补 参数组号:该静止无功补偿器参数组编号,具体参数需在“参数库”中填写,可 参考《PSASP7.0——图模平台用户手册》静止无功补偿器数据部分。 固定电容器容抗值:静止无功补偿器固定电容器部分容抗,单位为标幺值(p.u.)
2025-05-03 14:02:56 2.41MB psasp7.0手册
1
OTFS仿真,matlab程序
2023-04-01 03:54:31 55KB OFDM OTFS 多载波
1
现代信息处理应用中,对模数转换器的速度、精度、功耗和动态性能等关键性能指标不断提出更高的要求。针对模数转换的实际应用,提出并设计了一种基于TI公司生产的双通道14 位 250MSPS 低功耗A / D转换器 ADS4249的RGB视频编码器电路设计。这款A / D转换器的技术创新点在于其完美的实现高动态性能的同时又能拥有1.8 V超低功耗。这一特性使得ADS4249非常适合多载波,宽带通信的信号处理应用。
1
多载波调制本质上是一种频分复用技术。频分复用(FDM)技术早在 19 世纪以前就已 经被提出,它把可用带宽分成若干相互隔离的子频带,同时分别传送一路低速信号,从而 达到信号复用的目的。
2022-10-15 19:05:02 12KB 多载波调制 SC-FDE MATLAB
1
在 SIMULINK 中开发了一个简单的 FBMC 实现。 该模型基于 MATLAB 脚本“FBMC-vs-OFDM-modulation”帮助示例https://www.mathworks.com/help/comm/examples/fbmc-vs-ofdm-modulation.html 还上传了根据该帮助示例开发的修改后的 MATLAB 脚本,该脚本在 MATLAB 中模拟了 FBMC。 另一方面,SLX 文件在 SIMULINK 中模拟相同。
2022-09-16 12:05:44 29KB matlab
1
介绍了2H桥级联电路结构,研究和分析了用于多电平逆变器的三种不同的多载波PWM调制策略,并分析了逆变器侧输出电压频谱。在上述调制策略基础上结合多参考波调制方法,采用新型的多参考波和多载波的PWM技术,在Matlab/Simulink环境下构建了PWM调制模型。仿真结果与典型的多载波PWM策略结果的比较显示,新型的多载波控制方法能够小幅减小总谐波的失真率(THD),改善了输出电压频谱。
2022-09-15 18:19:57 294KB 多电平逆变器
1