1 Scope 11 2 References 11 3 Terms and definitions 12 4 Abbreviations 14 5 Conventions 17 6 Optical transport network interface structure 18 6.1 Basic signal structure 19 6.1.1 OCh substructure 19 6.1.2 Full functionality OTM n.m (n ≥ 1) structure 19 6.1.3 Reduced functionality OTM nr.m and OTM 0.m structure 20 6.2 Information structure for the OTN interfaces 20 7 Multiplexing/mapping principles and bit rates 24 7.1 Mapping 26 7.2 Wavelength division multiplex 27 7.3 Bit rates and capacity 27 7.4 ODUk Time Division Multiplex 28 8 Optical transport module (OTM n.m, OTM nr.m, OTM 0.m) 30 8.1 OTM with reduced functionality (OTM 0.m, OTM nr.m, OTM-0v.m) 30 8.1.1 OTM 0.m 31 8.1.2 OTM nr.m 31 8.1.2.1 OTM 16r.m 31 8.1.2.2 OTM 32r.m 33 8.1.3 OTM 0v.m Error! Bookmark not defined. 8.2 OTM with full functionality (OTM n.m) 35 9 Physical specification of the ONNI 37 9.1 OTM 0.m 37 9.2 OTM nr.m 37 9.2.1 OTM 16r.m 37 9.2.2 OTM 32r.m 37 9.3 OTM n.m 37 9.3 OTM 0v.m Error! Bookmark not defined. 10 Optical channel (OCh) 37 10.1 OCh with full functionality (OCh) 37 10.2 OCh with reduced functionality (OChr) 38 11 Optical channel transport unit (OTU) 38 11.1 OTUk frame structure 38 11.2 Scrambling 40 12 Optical channel data unit (ODUk) 40 12.1 ODUk frame structure 40 13 Optical channel payload unit (OPUk) 41 14 OTM overhead signal (OOS) 41 15 Overhead description 41 15.1 Types of overhead 43 15.1.1 Optical channel payload unit overhead (OPUk OH) 43 15.1.2 Optical channel data unit overhead (ODUk OH) 43 15.1.3 Optical channel transport unit overhead (OTUk OH) 44 15.1.4 Optical channel non-associated overhead (OCh OH) 44 15.1.5 Optical multiplex section overhead (OMS OH) 44 15.1.6 Optical transmission section overhead (OTS OH) 44 15.1.7 General management communications overhead (COMMS OH) 44 15.2 Trail trace identifier and access point identifier definition 44 15.3 OTS OH description 46 15.3.1 OTS trail trace identifier (TTI) 46 15.3.2 OTS backward defect indication – Payload (BDI-P) 46 15.3.3 OTS backward defect indication – Overhead (BDI-O) 46 15.3.4 OTS payload missing indication (PMI) 46 15.4 OMS OH description 47 15.4.1 OMS forward defect indication – Payload (FDI-P) 47 15.4.2 OMS forward defect indication – Overhead (FDI-O) 47 15.4.3 OMS backward defect indication – Payload (BDI-P) 47 15.4.4 OMS backward defect indication – Overhead (BDI-O) 47 15.4.5 OMS payload missing indication (PMI) 47 15.5 OCh OH description 47 15.5.1 OCh forward defect indication – Payload (FDI-P) 47 15.5.2 OCh forward defect indication – Overhead (FDI-O) 47 15.5.3 OCh open connection indication (OCI) 47 15.6 OTUk/ODUk frame alignment OH description 48 15.6.1 OTUk/ODUk frame alignment overhead location 48 15.6.2 OTUk/ODUk frame alignment overhead definition 48 15.6.2.1 Frame alignment signal (FAS) 48 15.6.2.2 Multiframe alignment signal (MFAS) 48 15.7 OTUk OH description 49 15.7.1 OTUk overhead location 49 15.7.2 OTUk overhead definition 50 15.7.2.1 OTUk section monitoring (SM) overhead 50 15.7.2.1.1 OTUk SM trail trace identifier (TTI) 50 15.7.2.1.2 OTUk SM error detection code (BIP-8) 50 15.7.2.1.3 OTUk SM backward defect indication (BDI) 51 15.7.2.1.4 OTUk SM backward error indication and backward incoming alignment error (BEI/BIAE) 51 15.7.2.1.5 OTUk SM incoming alignment error overhead (IAE) 52 15.7.2.1.6 OTUk SM reserved overhead (RES) 52 15.7.2.2 OTUk general communication channel 0 (GCC0) 52 15.7.2.3 OTUk reserved overhead (RES) 52 15.7.3 OTUkV overhead 52 15.8 ODUk OH description 53 15.8.1 ODUk OH location 53 15.8.2 ODUk OH definition 54 15.8.2.1 ODUk path monitoring (PM) overhead 54 15.8.2.1.1 ODUk PM trail trace identifier (TTI) 54 15.8.2.1.2 ODUk PM error detection code (BIP-8) 54 15.8.2.1.3 ODUk PM backward defect indication (BDI) 55 15.8.2.1.4 ODUk PM backward error indication (BEI) 55 15.8.2.1.5 ODUk PM status (STAT) 56 15.8.2.2 ODUk tandem connection monitoring (TCM) overhead 56 15.8.2.2.1 ODUk TCM trail trace identifier (TTI) 58 15.8.2.2.2 ODUk TCM error detection code (BIP-8) 59 15.8.2.2.3 ODUk TCM backward defect indication (BDI) 59 15.8.2.2.4 ODUk TCM backward error indication (BEI) and backward incoming alignment error (BIAE) 59 15.8.2.2.5 ODUk TCM status (STAT) 60 15.8.2.2.6 TCM overhead field assignment 61 15.8.2.2.7 ODUk tandem connection monitoring activation/deactivation coordination protocol 62 15.8.2.3 ODUk general communication channels (GCC1, GCC2) 62 15.8.2.4 ODUk automatic protection switching and protection communication channel (APS/PCC) 62 15.8.2.5 ODUk fault type and fault location reporting communication channel (FTFL) 63 15.8.2.5.1 Forward/backward fault type indication field 63 15.8.2.5.2 Forward/backward operator identifier field 64 15.8.2.5.3 Forward/backward operator specific field 65 15.8.2.6 ODUk experimental overhead (EXP) 65 15.8.2.7 ODUk reserved overhead (RES) 65 15.9 OPUk OH description 65 15.9.1 OPUk OH location 65 15.9.2 OPUk OH definition 66 15.9.2.1 OPUk payload structure identifier (PSI) 66 15.9.2.1.1 OPUk payload type (PT) 66 15.9.2.2 OPUk mapping specific overhead 67 16 Maintenance signals 67 16.1 OTS maintenance signals 68 16.1.1 OTS payload missing indication (OTS-PMI) 68 16.2 OMS maintenance signals 68 16.2.1 OMS forward defect indication – Payload (OMS-FDI-P) 68 16.2.2 OMS forward defect indication – Overhead (OMS-FDI-O) 68 16.2.3 OMS payload missing indication (OMS-PMI) 68 16.3 OCh maintenance signals 68 16.3.1 OCh forward defect indication – Payload (OCh-FDI-P) 68 16.3.2 OCh forward defect indication – Overhead (OCh-FDI-O) 68 16.3.3 OCh open connection indication (OCh-OCI) 68 16.4 OTUk maintenance signals 68 16.4.1 OTUk alarm indication signal (OTUk-AIS) 68 16.5 ODUk maintenance signals 69 16.5.1 ODUk alarm indication signal (ODUk-AIS) 69 16.5.2 ODUk open connection indication (ODUk-OCI) 69 16.5.3 ODUk locked (ODUk-LCK) 70 16.6 Client maintenance signal 71 16.6.1 Generic AIS for constant bit rate signals 71 17 Mapping of client signals 72 17.1 Mapping of CBR2G5, CBR10G, CBR10G3 and CBR40G signals (e.g., STM-16/64/256, 10GBASE-R) into OPUk 72 17.1.1 Mapping a CBR2G5 signal (e.g., STM-16) into OPU1 74 17.1.2 Mapping a CBR10G signal (e.g., STM-64) into OPU2 75 17.1.3 Mapping a CBR40G signal (e.g. STM-256) into OPU3 75 17.1.4 Mapping a CBR10G3125 signal (e.g., 10GBASE-xR) into OPU2e 76 17.2 Mapping of ATM cell stream into OPUk 76 17.3 Mapping of GFP frames into OPUk 77 17.4 Mapping of test signal into OPUk 78 17.4.1 Mapping of a NULL client into OPUk 78 17.4.2 Mapping of PRBS test signal into OPUk 78 17.5 Mapping of a non-specific client bit stream into OPUk 79 17.5.1 Mapping bit stream with octet timing into OPUk 80 17.5.2 Mapping bit stream without octet timing into OPUk 80 17.6 Mapping of other constant bit-rate signals with justification into OPUk 80 17.7 Mapping a 1000BASE-X and FC-1200 signal via timing transparent transcoding into OPUk 80 17.7.1 Mapping a 1000BASE-X signal into OPU0 81 17.7.2 Mapping a FC-1200 signal into OPU2e 88 18 Concatenation 88 18.1 Virtual concatenation of OPUk 91 18.1.1 Virtual concatenated OPUk (OPUk-Xv, k = 1 .. 3, X = 1 .. 256) 91 18.1.2 OPUk-Xv OH description 92 18.1.2.1 OPUk-Xv OH location 92 18.1.2.2 OPUk-Xv OH definition 93 18.1.2.2.1 OPUk-Xv Payload Structure Identifier (PSI) 93 18.1.2.2.1.1 OPUk-Xv Payload Type (vcPT) 93 18.1.2.2.1.2 OPUk-Xv Payload Structure Identifier Reserved overhead (RES) 94 18.1.2.2.2 OPUk-Xv Virtual Concatenation Overhead (VCOH1/2/3) 94 18.1.2.2.2.1 OPUk-Xv Virtual Concatenation MultiFrame Indicator (MFI1, MFI2) 94 18.1.2.2.2.2 OPUk-Xv Sequence Indicator (SQ) 95 18.1.2.2.2.3 OPUk-Xv LCAS Control Words (CTRL) 95 18.1.2.2.2.4 OPUk-Xv LCAS Member Status Field (MST) 95 18.1.2.2.2.5 OPUk-Xv LCAS Group Identification (GID) 95 18.1.2.2.2.6 OPUk-Xv LCAS Re-Sequence Acknowledge (RS-Ack) 95 18.1.2.2.2.7 OPUk-Xv LCAS Cyclic Redundancy Check (CRC) 96 18.1.2.2.2.8 OPUk-Xv VCOH Reserved Overhead 96 18.1.2.2.3 OPUk Mapping Specific Overhead 96 18.2 Mapping of client signals 96 18.2.1 Mapping of CBR signals (e.g., STM-64/256) into OPUk-4v 96 18.2.1.1 Mapping a CBR10G signal (e.g. STM-64) into OPU1-4v 97 18.2.1.2 Mapping a CBR40G signal (e.g. STM-256) into OPU2-4v 98 18.2.2 Mapping of CBR signals (e.g., STM-256) into OPUk-16v 98 18.2.2.1 Mapping a CBR40G signal (e.g., STM-256) into OPU1-16v 100 18.2.3 Mapping of ATM cell stream into OPUk-Xv 101 18.2.4 Mapping of GFP frames into OPUk-Xv 102 18.2.5 Mapping of test signal into OPUk-Xv 102 18.2.5.1 Mapping of a NULL client into OPUk-Xv 102 18.2.5.2 Mapping of PRBS test signal into OPUk-Xv 103 18.2.6 Mapping of a non-specific client bit stream into OPUk-Xv 104 18.2.6.1 Mapping bit stream with octet timing into OPUk-Xv 105 18.2.6.2 Mapping bit stream without octet timing into OPUk-Xv 105 18.3 LCAS for virtual concatenation 105 19 Mapping ODUj signals into the ODTUjk and ODTU? signals 105 19.1 OPUk Tributary Slot definition 105 19.1.1 OPU2 Tributary Slot allocation 106 19.1.2 OPU3 Tributary Slot allocation 107 19.1.3 OPU4 Tributary Slot allocation 110 19.1.4 OPU1 Tributary Slot allocation 109 19.2 ODTUjk and ODTU? definitions 110 19.2.1 ODTU12 110 19.2.2 ODTU13 110 19.2.3 ODTU23 110 19.2.7 ODTU01 110 19.2.8 ODTU? Error! Bookmark not defined. 19.3 Multiplexing ODTUjk and ODTU? signals into the OPUk 111 19.3.1 ODTU12 mapping into one OPU2 2.5G Tributary Slot 111 19.3.2 ODTU13 mapping into one OPU3 2.5G Tributary Slot 112 19.3.3 ODTU23 mapping into four OPU3 2.5G Tributary Slots 113 19.3.4 ODTU01 mapping into one OPU1 1.25G Tributary Slot 114 19.4 OPUk Multiplex Overhead 115 19.4.1 OPUk Multiplex Structure Identifier (MSI) 118 19.4.1.1 OPU2 Multiplex Structure Identifier (MSI) 119 19.4.1.2 OPU3 Multiplex Structure Identifier (MSI) 119 19.4.1.3 OPU4 Multiplex Structure Identifier (MSI) 120 19.4.1.4 OPU1 Multiplex Structure Identifier (MSI) Error! Bookmark not defined. 19.4.2 OPUk Payload Structure Identifier Reserved overhead (RES) 120 19.4.3 OPUk Multiplex Justification Overhead (JOH) 121 19.4.3.1 Asynchronous Mapping Procedure Error! Bookmark not defined. 19.4.3.2 Asynchronous Generic Mapping Procedure Error! Bookmark not defined. 19.4.4 OPU4 Multi Frame Identifier overhead (OMFI) 121 19.5 Mapping ODUj into ODTUjk 121 19.5.1 Mapping ODU1 into ODTU12 122 19.5.2 Mapping ODU1 into ODTU13 123 19.5.3 Mapping ODU2 into ODTU23 124 19.5.4 Mapping ODU0 into ODTU01 126 ODU0 into OPUk Tributary Slot Mapping Error! Bookmark not defined. 19.6 Mapping ODUj into ODTU
2025-12-25 16:30:53 1.88MB G.709
1
### 3GPP TS 36.300 V10.2.0协议解析 #### 一、概述 3GPP TS 36.300 V10.2.0是3GPP(第三代合作伙伴项目)为Evolved Universal Terrestrial Radio Access (E-UTRA) 和 Evolved Universal Terrestrial Radio Access Network (E-UTRAN)制定的技术规范文档,该版本发布于2010年12月。本文档主要涉及E-UTRA和E-UTRAN的整体描述,特别是第二阶段(Stage 2)的设计和技术细节。 #### 二、关键词解释 - **UMTS**:即通用移动通信系统,是一种3G移动通信技术标准。 - **Stage 2**:指在UMTS标准中的设计阶段,通常涉及系统架构、接口定义等高级别描述。 - **Radio**:在此文中特指无线电接入技术。 - **Architecture**:架构,在这里是指E-UTRA/E-UTRAN系统的整体结构设计。 #### 三、技术规范概览 ##### 1. 范围(Scope) 该文档规定了E-UTRA和E-UTRAN的整体架构及其功能划分。其目标是为未来的开发工作提供指导,并确保与现有UMTS标准的一致性和兼容性。 ##### 2. 引用(References) 文档中引用了一系列相关的技术规范和文档,这些规范和文档为理解本文档提供了必要的背景信息和支持。 ##### 3. 定义、符号和缩写(Definitions, symbols and abbreviations) 文档中定义了一系列术语、符号和缩写,以便清晰地传达技术细节。例如,“E-UTRA”指的是演进型通用陆地无线接入技术,“E-UTRAN”指的是演进型通用陆地无线接入网络。 - **3.1 定义(Definitions)** 这部分定义了与E-UTRA/E-UTRAN相关的关键概念和技术术语,如“用户平面(User plane)”、“控制平面(Control plane)”等。 - **3.2 缩写(Abbreviations)** 包括了一系列重要的缩写词,比如E-UTRA、E-UTRAN、HNB(Home Node B)、HNB-GW(HNB Gateway)等。 ##### 4. 整体架构(Overall architecture) 这部分详细描述了E-UTRA/E-UTRAN的整体架构,包括功能性划分、无线电协议架构等方面。 - **4.1 功能性划分(Functional Split)** 描述了E-UTRAN内部的功能模块划分以及它们之间的交互方式。这种划分对于优化性能和简化网络设计至关重要。 - **4.2 空缺(Void)** 文档中提到的部分空缺部分,可能是由于后续版本会进一步补充或修改的地方。 - **4.3 无线电协议架构(Radio Protocol architecture)** - **4.3.1 用户平面(User plane)** 用户平面处理数据流的传输,包括数据包的封装和解封装、加密等功能。 - **4.3.2 控制平面(Control plane)** 控制平面负责信令消息的传输,管理无线资源,协调网络操作。 - **4.4 同步(Synchronization)** 讨论了E-UTRA/E-UTRAN中的同步机制,确保所有节点之间的时间同步,这对于高效的数据传输至关重要。 - **4.5 IP分片(IP fragmentation)** 提到了IP分片的问题,这是在网络层对大型数据包进行分割以适应不同网络设备的MTU(最大传输单元)限制的过程。 - **4.6 支持HeNBs(Support of HeNBs)** HeNBs是指家庭基站(Home Node Bs),这部分讨论了如何支持小型基站的集成,以增强网络覆盖和服务质量。 #### 四、总结 3GPP TS 36.300 V10.2.0是关于E-UTRA/E-UTRAN的关键技术规范之一,它详细阐述了这些技术的核心架构和设计原则。通过深入研究这份文档,可以更好地理解4G/LTE网络的工作原理和技术细节。此外,该文档还为后续版本的技术发展奠定了基础,并为网络运营商提供了实现标准的一致性指南。
2025-12-24 19:07:05 1.85MB UMTS stage radio architecture
1
OPCDA,即OLE for Process Control Data Access,是一种工业自动化领域的通信标准。它允许不同的工业设备和应用程序之间的数据交换。OPCDA通过一套标准的接口,即COM(Component Object Model)接口,来实现数据的读取和写入。这些接口定义了一组规范,使得不同的工业软件可以很容易地访问和共享数据。 64位客户端动态库(也称为DLL,Dynamic Link Library)是一个软件组件,它包含了可以被其他应用程序调用的函数和数据。在64位操作系统中,运行的软件必须支持64位计算才能充分利用系统资源。因此,OPCDA 64位客户端动态库是为了让64位的操作系统和应用程序能够顺利访问OPC服务器上的数据而设计的。 OPCDA客户端动态库的重要性在于它提供了一种中间件解决方案,使得上层应用程序能够从各种不同的OPC服务器中读取或写入数据。这在工业自动化领域极为重要,因为它简化了复杂的系统集成过程,使得来自不同厂商的设备和软件能够无缝协同工作。 在实际应用中,OPCDA动态库需要正确安装并配置后,才能被应用程序识别和使用。开发者需要根据OPCDA的标准接口开发相应的客户端应用程序,从而实现对工业设备数据的访问。在开发过程中,可能需要设置一些必要的连接参数,如服务器地址、端口号、安全认证等,以确保与OPC服务器的通信稳定和安全。 此外,OPCDA客户端动态库的维护和更新也非常重要。随着工业技术的发展,OPC标准也在不断地更新和升级,以适应新的工业通信需求。因此,及时更新到最新版本的OPCDA动态库,是保证工业通信系统兼容性和稳定性的重要措施。 OPCDA 64位客户端动态库是工业自动化领域中不可或缺的组成部分,它为不同工业设备和应用程序之间的数据交换提供了一种有效的解决方案。通过使用标准的COM接口,OPCDA动态库大大简化了工业系统的集成工作,提升了系统运行的稳定性和效率。
2025-12-24 16:55:56 208KB opcDA
1
油库安全监控系统硬件设计的相关知识点涵盖以下几个重要方面: 1.油库的重要性与特点:油库作为油气运输过程中的关键环节,其作用在于集中存储开采的原油,并对原油的输送及存储量进行计算和管理。油库的工艺特点包括系统关联紧密、操作规程严格、系统运行状况复杂多变以及流程多变。油库的安全生产直接关系到后端如加油站的长期安全平稳运行,对整个油气生产的经济效益产生重大影响。 2.油库工艺流程的复杂性:随着油田开发进入高含水后期,油库工艺过程更加复杂。原油的集中输运和储存涉及到多个环节,如输油脱水、污水浅处理、污水深处理、注水、锅炉和配电等。这些环节要求一个集发油、卸油等多种工艺系统为一体的综合性生产过程。 3.监测控制方法:油库生产工艺过程的控制主要包括三种方法,即人工监测控制、常规仪表自动监测控制、计算机监测控制。人工监测控制效率和安全性较低,常规仪表控制在油库生产中广泛应用,而计算机监测控制能够提供更复杂的控制算法,实现协调管理和优化控制。 4.油库安全监控系统硬件选型与设计:在设计油库安全监控系统硬件时,采用PLC(可编程逻辑控制器)和仪表方案,这些硬件需要满足实时监控和数据采集的需求。具体设计包括系统监控硬件的选型、实现监控系统方案的设计,以及保障系统安全可靠和便于维护。 5.自动化技术在油库生产中的应用:随着自动化水平的提高,油库生产实施自动化监控变得尤为紧迫。自动化技术的引入旨在提高生产效率、减少事故发生率、降低工人的劳动强度,并实现节能降耗和安全生产。 6.计算机监控系统介绍:计算机监控技术是一门综合性的技术,涉及到计算机技术与自动化仪表的结合。其作用是处理、运算、显示和控制工业生产过程中的各种工艺参数,相对于常规仪表控制,可以提供更为复杂的控制算法,并实现对相关参数的综合分析,优化控制。 7.系统监控硬件选型与介绍:油库安全监控系统硬件设计需要综合考虑油库的工艺特点、安全要求和维护便捷性。PLC和仪表作为硬件的核心,要能够在复杂的油库环境下稳定运行,满足实时监控的需求。 通过上述内容的学习,我们可以更加深入地理解油库安全监控系统硬件设计的重要性、设计方法和应用实践。这对于提高油库作业的安全性、可靠性和生产效率具有关键作用,并对油库的安全生产和智能化管理提供有力的技术支持。同时,了解油库的工艺特点和监测控制方法,对于油库安全监控系统的硬件选型和设计工作具有直接的指导意义。
2025-12-24 16:17:53 452KB
1
OpenStack是一个开源的云计算管理平台项目,由多个主要组件构成,提供基础设施即服务(IaaS)的解决方案。它允许企业或个人通过云计算模型快速搭建和管理公有云或私有云服务。Zabbix是一个基于Web的开源监控工具,用于监控各种网络服务、服务器和网络硬件等的状态和性能。 在现代云计算环境中,虚拟机的管理与监控是至关重要的。虚拟机可以在任何时候出现故障,或者性能下降,因此实时监控虚拟机状态对于保证云服务的高可用性和性能至关重要。传统的监控方法可能需要人工介入,效率低下,而将OpenStack与Zabbix结合,可以实现自动化、智能化的监控流程。 OpenStack通过其组件如Nova(计算服务)、Neutron(网络服务)等,负责管理云环境中的虚拟机实例,并能收集到虚拟机的各种运行数据。Zabbix则可以通过API或者其他方式从OpenStack获取这些数据。通过在Zabbix中配置相应的监控项和触发器,管理员可以监控虚拟机的CPU使用率、内存消耗、磁盘I/O、网络流量等关键性能指标。当这些指标超过预设的阈值时,Zabbix可以及时发出警报,使得管理员能够迅速响应。 Zabbix之所以能够支持与OpenStack的集成,部分原因是因为它提供了丰富的API支持。这使得Zabbix可以非常灵活地与其他系统集成,包括从数据的采集到警报的发送,都可以通过编程方式进行自定义。因此,企业可以根据自身需求定制监控策略,实现更加贴合实际业务的监控解决方案。 集成OpenStack与Zabbix监控系统的另一个关键优势在于其扩展性。随着云计算环境的规模扩大,监控系统也需要随之扩展,以满足更大规模虚拟机的监控需求。Zabbix由于其架构设计,可以水平扩展,通过增加监控服务器的节点来分散负载,保持高效率的监控响应。 在实现OpenStack与Zabbix的集成过程中,需要进行一系列的配置工作。确保OpenStack环境稳定运行,并且能够提供所需的数据接口供Zabbix访问。接着,需要在Zabbix中设置数据源,定义好数据采集的规则和策略。然后,配置监控项,将数据采集规则与具体的监控项相绑定。设置触发器和通知媒介,以实现自动报警和故障恢复等功能。 在实际部署时,管理员还必须考虑到监控数据的安全性和隐私保护。需要确保监控数据的传输和存储过程符合相应的安全标准和法规要求。此外,监控系统本身也需要定期进行维护和升级,以应对潜在的漏洞和性能瓶颈。 通过将OpenStack采集数据分类并发现到Zabbix系统中,可以实现对虚拟机状态的有效监控。这种集成方法不仅提高了监控效率,减少了人力资源的消耗,而且通过自动化和智能化的手段,大大提高了云计算环境的可靠性与响应速度。企业通过这种方式可以更好地管理云资源,提升服务质量,最终实现业务的快速发展。
2025-12-24 14:30:28 9KB
1
华为云办公Mac版本,登录后点击客户端下载,会自动下载华为CloudClient(FusionAccess)用于远程登录
2025-12-23 16:28:57 206.47MB macos
1
内容概要:本文详细介绍了STM32F1系列单片机的空中升级(OTA)解决方案,采用YModem协议进行固件更新。首先讲解了Bootloader的设计,包括启动时的跳转逻辑、中断向量表偏移以及Flash擦写操作。接着探讨了上位机部分,使用C#实现了YModem协议的文件分块发送,并强调了CRC校验和包序号校验的重要性。最后分享了一些实用的调试技巧和常见问题的解决方案,如波特率选择、内存对齐、Flash擦除等。 适合人群:从事嵌入式开发的技术人员,尤其是熟悉STM32平台并希望掌握空中升级技术的研发人员。 使用场景及目标:适用于需要对STM32F1系列单片机进行远程固件更新的项目,帮助开发者理解和实现基于YModem协议的空中升级方案,提高系统的灵活性和维护性。 其他说明:文中提供了详细的代码示例和配置步骤,便于读者快速上手实践。同时提醒读者注意一些容易忽视的关键点,如波特率设置、Flash擦除方式等,以确保升级过程顺利进行。
2025-12-23 14:10:50 373KB
1
### 韦根门禁通讯协议详解 #### 一、前言 Wiegand(韦根)协议是一种专用于门禁控制系统中读卡器与卡片间通信的标准协议,由摩托罗拉公司制定。该协议主要关注于数据传输方式,而非具体的通信速率或数据长度。 #### 二、韦根数据输出的基本概念 韦根数据输出通过两条线实现,分别是DATA0和DATA1,这两条线分别用于传输数字“0”和“1”。 - **传输“0”**:DATA0线上会产生一个负脉冲。 - **传输“1”**:DATA1线上会产生一个负脉冲。 - **脉冲参数**:负脉冲宽度TP为100微妙,周期TW为1600微妙。 #### 三、韦根26位输出格式 韦根26位输出格式是当前应用最为广泛的一种格式,具体结构如下: ``` EXXXXXXXXXXXXXXXXXXXXXXXXO ``` - **格式解释**:前12位为偶校验,接下来12位为实际数据(地区码和卡号),最后12位为奇校验。 - **地区码**:如果地区码为2个字符(8位),则可以设置255个不同的地区码。 - **卡号**:如果卡号为4个字符(16位),则可以设置65536个不同的卡号。 以电子卡为例,假设地区码为01,卡号为0001,则韦根输出为: ``` 10000000100000000000000010 ``` #### 四、韦根26接收 由于韦根协议对接收时间的实时性有较高要求,因此简单的查询方法容易导致数据丢失。为了避免这种情况,推荐使用中断的方式进行接收: - 当DATA0线上检测到0时,应立即触发中断处理程序,以避免因主程序执行其他任务而导致的数据丢失。 - 中断处理程序应在接收到数据后立即更新接收标志位,以便主程序能够及时响应并正确处理数据。 #### 五、韦根接口定义 Wiegand接口通常包含以下三个组成部分: - **DATA0**:通常为绿色线,负责传输数字“0”。 - **DATA1**:通常为白色线,负责传输数字“1”。 - **GND**:通常为黑色线,作为信号地。 安装商在连接读卡器和门禁控制面板时,需要确保这些接口清晰可见。 #### 六、发送程序示例 以下是一个将数组封装成韦根26格式的发送程序示例: ```c void send_wiegand26(uchar *str) { // 数组到韦根包的转换逻辑 uchar datai; static uchar dataone_num; // 计算1的个数 uchar datacheck_temp; // 奇偶校验中间暂存 bit even; // 前12位偶校验 bit odd; // 后12位奇校验 static uchar datawiegand[3]; // 韦根包数据24位 // 端口方向定义 P3M0 = 0x00; // 普通I/O口 P3M1 = 0x00; // 数组到韦根包的转化 wiegand[0] = wiegand[0] | ((*str << 4)); wiegand[0] = wiegand[0] | (*(str + 1) & 0x0f); // 计算前8位1的个数,为偶校验使用 check_temp = 0; for (datai = 0; datai < 8; datai++) { if ((wiegand[0] >> datai) & 0x01) { check_temp++; } } even = (check_temp % 2 == 0); // ...后续的奇校验计算和数据发送过程省略... } ``` 通过上述内容,我们可以了解到韦根门禁通讯协议的基本原理及其在门禁系统中的应用。此外,还提供了韦根26位格式的具体结构及数据传输细节,以及如何通过编程实现数据的发送与接收,为开发人员提供了实用的技术指导。
2025-12-23 10:31:19 161KB 门禁通讯
1
AndeShape-ATCDMA110/200/300 IP手册是一份详细的数据手册,由Andes Technology Corporation于2019年12月18日发布。这份手册详细介绍了AndeShape™ ATCDMAC110系列产品的技术细节,旨在指导用户正确使用AndeShape产品。该手册包含了产品相关的各种信息和图表,以及对于产品性能和功能的深入描述。手册中特别提到了以下几个方面: 1. 该手册强调其内容包含与Andes Technology Corporation相关的机密信息,因此对于文档的使用给予了限制。这意味着手册中的信息不能被任意复制、传输、转录、存储或翻译成任何语言,除非得到了Andes Technology Corporation的书面许可。 2. 手册提到产品仍在不断开发和改进之中,所包含的信息是基于Andes公司的良好意愿提供的,但没有附带任何保证。 3. 对于文档中可能存在的任何问题,手册提供了联系信息,以便用户能通过邮件或官方网站联系Andes Technology Corporation,并提供了具体的问题反馈格式,包括文档标题、文档编号、相关页面号以及对问题的简洁描述。 4. 手册还包含了文档的修改历史,列出了修订日期和修订内容,例如在图1中纠正了方框图,以及在表1和相关章节中增加了SrcAddrH、DstAddrH和LLPointerH寄存器的描述。 5. 文档中强调了Andes Technology Corporation对于因使用手册中的信息或产品不当使用而可能产生的任何损失或损害不承担责任。 AndeShape™ ATCDMAC110系列产品的数据手册对于理解和操作该产品至关重要。它不仅为用户提供详细的技术参考,还反映了Andes Technology Corporation对其知识产权和用户服务的重视。手册的发布也是公司持续支持产品改进和用户反馈的一部分。这份文档是Andes Technology Corporation向用户传达技术信息和提供产品支持的重要渠道,对于确保产品的正确使用和维护至关重要。 尽管手册本身强调了使用信息时的限制,但同时也积极鼓励用户就文档内容提出一般性的改进建议,显示出公司愿意聆听客户的声音并不断优化产品的态度。整体而言,AndeShape-ATCDMA110/200/300 IP手册不仅是技术参考资料,也是公司与用户之间沟通的桥梁。
2025-12-22 19:54:26 331KB 网络协议
1
西门子为什么WinCC客户端无法与WinCC服务器通讯?pdf,西门子为什么WinCC客户端无法与WinCC服务器通讯? 这可能是由于终端总线配置不正确造成的。举例来讲,如果计算机上有多个网卡,则要确保为访问终端总线的网卡设置了正确参数。
2025-12-22 14:17:38 129KB 综合资料
1