植被覆盖度( FVC)指植被(叶、茎、枝)在地面垂直投影面积占区域总面积比例。 像元二分模型计算:FVC=(NDVI - NDVI_soil)/(NDVI_veg - NDVI_soil) 式中,NDVI_soil为完全裸土或无植被覆盖区域NDVI值,NDVI_veg为完全被植被覆盖的像元NDVI值。累计百分比为5%时的NDVI值为NDVI_soil,累计百分比为95%时的NDVI值为NDVI_veg。
2025-06-15 17:33:19 1KB python 像元二分模型
1
在现代工业质量检测或图像分析任务中,利用图像处理和纹理分析方法来判别表面是否光滑,具有重要的现实意义。本文将介绍一段基于 Python、OpenCV 以及 scikit-image 的代码,展示如何通过图像预处理、纹理分析、轮廓检测和加权评分等步骤,实现对多张图像进行批量的表面光滑度判定。 在现代工业领域,质量检测和图像分析任务扮演着极其重要的角色。表面光滑度作为产品质量的重要指标之一,对于很多产品来说,表面是否平滑光洁直接关联着产品的性能和外观。随着数字图像处理技术的发展,通过图像处理技术来判别物体表面光滑度成为可能。 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它提供了大量用于图像处理的函数和操作。而scikit-image是基于Python的开源图像处理库,它构建于SciPy之上,并且提供了许多在工业中广泛应用的图像处理功能。本文将详细介绍如何结合使用Python、OpenCV和scikit-image库来判别图像表面的光滑度。 图像预处理是图像处理流程中不可缺少的一个步骤,它的主要目的是为了提高图像质量,去除噪声,增强图像特征,以便后续的处理和分析。预处理过程包括灰度化、滤波去噪、对比度增强等操作。灰度化能够减少图像的信息量,简化处理过程;滤波去噪是为了清除图像中的随机噪声,使图像纹理更加清晰;对比度增强则能够突出图像中的细节部分,为后续的纹理分析提供清晰的依据。 纹理分析是评估图像表面光滑度的关键步骤。纹理可以反映图像表面的微观特性,通过分析纹理,我们可以获得关于表面粗糙程度的定性和定量信息。在本文中,我们将使用灰度共生矩阵(GLCM)等方法进行纹理分析。GLCM能够描述图像中像素灰度的空间相关特性,通过统计分析,可以从图像中提取出粗糙度、对比度、均匀性等纹理特征。 轮廓检测是另一个重要的步骤,它涉及到识别和提取图像中对象的边缘信息。在光滑度检测中,轮廓检测有助于明确表面的边界,为光滑度评估提供准确的区域限定。OpenCV提供了多种边缘检测算法,例如Canny边缘检测器,通过边缘的锐利程度可以辅助判断表面的光滑性。 为了得到更加精确的光滑度评估结果,本文还会采用加权评分的方法。首先根据纹理分析和轮廓检测的结果给出初步评分,然后根据实际需求和经验赋予各项指标不同的权重,最后综合各指标得分进行加权平均,得到最终的表面光滑度判定结果。 整个流程不仅可以应用于工业产品的质量检测,也可以广泛应用于建筑、材料科学等领域。通过自动化的图像处理技术来评估表面光滑度,可以大大提高检测效率和准确性,减少人为错误,提升生产效率。 基于OpenCV和scikit-image的图像表面光滑度判别方法,不仅包含了图像预处理、纹理分析、轮廓检测和加权评分等多个环节,而且通过自动化处理实现了对表面光滑度的准确评估,这对于现代工业质量检测具有重要的现实意义和应用价值。
2025-06-15 11:03:02 5KB opencv
1
基于120度解耦调制的共直流母线型三相开绕组永磁同步电机零序电流抑制仿真研究及效果展示,基于120度解耦调制的共直流母线型三相开绕组永磁同步电机零序电流抑制仿真研究,共直流母线型三相开绕组永磁同步电机零序电流抑制仿真 基于120度解耦调制 -----------------仿真内容说明----------------- 1开绕组电机模型根据dq轴数学模型搭建 2双逆变器调制策略基于120度解耦调制策略 3零序电流控制器采用频率自适PR控制器 -----------------仿真效果展示----------------- 见图 ]默认发放2022a版本文件 ,关键词: 共直流母线型;三相开绕组永磁同步电机;零序电流抑制仿真;120度解耦调制;开绕组电机模型;双逆变器调制策略;频率自适PR控制器;仿真效果。,共直流母线型三相开绕组永磁同步电机仿真研究:基于120度解耦调制与零序电流抑制
2025-06-12 14:24:26 279KB paas
1
内容概要:这份试卷涵盖了算法设计与分析课程的核心知识点,主要包括五个大题。第一题要求设计并优化一个递归算法用于计算2^n的值,分析其时间复杂度,并提出改进措施以提高效率。第二题聚焦于无序数组中位数的查找,不仅需要阐述算法思想,还要具体演示查找过程及其键值比较次数。第三题涉及递归方程求解,要求给出解析解。第四题围绕堆排序展开,包括最大堆的构建、降序排序的具体步骤以及时间复杂度分析。第五题则探讨了最短路径问题和背包问题,前者要求设计算法计算任意两点间的最短路径并分析时间复杂度,后者要求针对给定实例设计三种贪心算法和自底向上的动态规划算法求解最优解,同时分析算法的时间复杂度。; 适合人群:计算机科学相关专业的大二及以上学生,尤其是正在学习或复习算法设计与分析课程的学生。; 使用场景及目标:①帮助学生巩固课堂上学到的理论知识,如递归、排序、贪心算法、动态规划等;②通过实际题目练习,提高解决复杂问题的能力;③为准备期末考试或其他相关考试提供参考和练习材料。; 阅读建议:由于试卷题目较为抽象且涉及较多数学推导,建议在解答前先复习相关概念和公式,再尝试独立完成每道题目。可以将此试卷作为阶段性测试工具,在学习完相应章节后进行自我检测。
1
### 算法设计与分析实验报告知识点总结 #### 实验一:Coin-row problem 1. **问题定义**:给定一排硬币,每个硬币有一定的价值,求出一种方法在不拾取相邻硬币的前提下,可以拾取的最大价值。 2. **算法思想**:通过动态规划解决问题,从左到右计算每一个位置能获得的最大价值。对于每个硬币,有两种选择:拾取当前硬币和不拾取当前硬币,然后取两种选择中的最大值。 3. **时间复杂度**:O(n),因为只需要遍历一次硬币数组即可完成计算。 4. **空间复杂度**:O(1),由于只需要存储上一个位置和当前位置的两个值,可以使用固定空间完成计算。 5. **具体实现**:首先定义数组来存储每一步的最大值,然后从左到右遍历数组,每个位置上更新最大值,最后输出最后一个硬币的最大值作为答案。 #### 实验二:Coin-collecting by robot 1. **问题定义**:在一块棋盘上,机器人从左上角出发,到达右下角,中间有硬币分布,要求在不回头的前提下,拾取尽可能多的硬币。 2. **算法思想**:使用动态规划算法。机器人在每个格子时,有两种选择:向右或向下移动一格。在每次移动时,比较右边和下面的硬币数量,选择一个硬币数量多的方向移动,从而保证在到达右下角时,已经收集了最多的硬币。 3. **时间复杂度**:O(n*m),其中n是棋盘的行数,m是棋盘的列数,因为需要遍历整个棋盘。 4. **空间复杂度**:O(n*m),由于需要一个二维数组来记录每个位置的最大硬币数,空间复杂度与棋盘的大小成正比。 5. **具体实现**:定义一个二维数组来存储到每个位置时可能收集到的最大硬币数,然后遍历整个棋盘,记录从起点到每个格子的最大硬币数,最后输出右下角的最大硬币数。 #### 实验方案 1. **头文件和命名空间**:使用了头文件,这个头文件包含了几乎所有的C++标准库头文件,方便代码编写,但在生产环境中使用需要谨慎。 2. **变量声明和初始化**:声明了数组a来存储硬币的价值或硬币的分布,并初始化为0。 3. **输入处理**:使用cin来读取硬币的数量和每枚硬币的价值或硬币的分布矩阵。 4. **算法实现**:使用动态规划的方法进行数组的更新,得出最大价值或硬币数量。 5. **测试数据规模及生成方式**:设定不同的数据规模进行测试,手动输入测试数据,以验证算法的正确性和效率。 6. **运行时间和空间的采集方法**:使用clock_t数据类型和clock()函数来计算算法运行的时间,并通过sizeof运算符来获取程序运行时占用的内存空间。 #### 实验环境 实验环境配置为Windows 10系统,使用DEV开发环境进行代码的编写和测试。 ###
1
要运行代码,请在 Matlab 窗口中键入“start”。 这是为论文生成结果的软件 Jan Martin Nordbotten、Talal Rahman、Sergey Repin、Jan Valdman,Barenblatt-Biot 多Kong弹性模型近似解的后验误差估计。 应用数学中的计算方法 10, No. 3, 302-315 (2010) 可以在位于http://sites.google.com/site/janvaldman/publications的作者网页上找到该论文的链接 当您发现代码有用时,请引用该论文。
2025-05-25 17:27:09 6KB matlab
1
该资源是一个基于PHP开发的在线文档分享平台的源码,其设计灵感来源于知名的某度文库网站。这个系统旨在提供一个平台,让用户可以上传、分享和下载各种文档,类似于一个文档版的社交网络。 我们需要了解PHP。PHP是一种广泛使用的开源服务器端脚本语言,尤其适用于Web开发,可以嵌入到HTML中。它提供了丰富的函数库和强大的数据库接口,使得开发者能够快速构建动态网站。 此源码的核心功能可能包括以下几点: 1. **用户管理**:系统应该包含用户注册、登录、个人信息管理等功能。用户可以创建自己的账户,上传和下载文档,并对其他用户的文档进行评论或点赞。 2. **文档上传**:用户可以上传各种格式的文档,如PDF、DOC、PPT、TXT等。源码中可能包含文件上传的处理逻辑,包括文件类型检查、大小限制、病毒扫描等安全措施。 3. **文档分类与搜索**:为了便于用户查找文档,系统可能有文档分类功能,比如按照学科、主题、类型等进行分类。同时,提供高效的全文搜索功能,让用户能快速找到所需的文档。 4. **文档预览与下载**:用户在下载文档前可能需要预览内容,源码中应包含文档预览的实现,可能通过转换文档为图片或者使用第三方服务来实现。下载则需要处理权限验证,比如免费下载或需购买积分。 5. **积分系统**:为了鼓励用户分享和下载文档,可能会引入积分系统。用户上传文档可以获得积分,下载文档可能需要消耗积分。 6. **支付接口**:如果涉及到付费下载,源码中可能集成了支付接口,如支付宝、微信支付等,以便处理用户购买积分或直接购买文档的交易。 7. **后台管理**:管理员可以对平台进行维护和监控,如管理用户、审核文档、处理违规行为、查看统计报告等。 安装过程可能如下: 1. 解压下载的压缩包,找到`wwwroot`目录,这是网站的根目录。 2. 阅读`install.html`和`安装说明.html`,按照指南配置服务器环境,通常需要PHP和MySQL支持。 3. 使用`使用说明.txt`了解如何运行安装脚本,创建数据库并导入数据。 4. 根据提示填写配置信息,如数据库连接、管理员账号等。 5. 完成安装后,根据`readme.txt`了解进一步的使用和更新信息。 在实际部署和使用过程中,开发者和管理员需要关注安全性、性能优化以及用户体验等方面的问题。对于初学者,这是一个很好的学习PHP和Web开发实践的项目,而对于有一定经验的开发者,这个源码可以作为基础,进行二次开发,打造更符合特定需求的在线文档分享平台。
2025-05-24 16:59:15 23.63MB
1
多响应面法存在越多的子区域划分带来更多的计算量,且无法有效地解决子区域交接处的拟合精度等问题。采用空间滤波法对多响应面法进行改进,构建了基于空间滤波的多响应面法,将蒙特卡洛抽样后的初始值进行空间滤波处理以消除多响应面子区域交接处的突兀点,提高可靠度计算精度和计算效率。最后将该方法应用于边坡工程实例中计算可靠度,并与MSARMA法和多响应面法的计算结果进行对比分析。结果表明:空间滤波后的可靠度计算结果要比处理前精度更高,也与原MSARMA法计算结果接近。证明了空间滤波处理的有效性,也类似为工程地质灾害防治提供了参考。
2025-05-19 16:13:07 1.41MB 空间滤波 多响应面 边坡稳定性分析
1
基于发动机动力学特性的逆动力学模型生成技术:输入扭矩转速,输出节气门开度,实现车辆纵向车速精准控制,基于发动机动力学特性的逆动力学模型生成:输入扭矩转速,输出节气门开度控制车辆纵向车速,发动机逆动力学模型生成,根据发动机动力学特性数据,生成逆动力学模型,输入扭矩转速,生成对应的节气门开度,用于车辆的纵向车速控制。 ,发动机逆动力学模型生成; 动力学特性数据; 输入扭矩转速; 节气门开度; 纵向车速控制。,发动机逆动力学模型生成技术:扭矩转速至节气门开度映射 逆动力学模型是一种基于系统动力学特性来建立的数学模型,其核心在于通过已知的输入参数推导出相应的输出控制量。在发动机领域,逆动力学模型的应用尤其广泛,尤其是在车辆的纵向车速控制上。通过逆动力学模型,可以从输入的扭矩转速参数出发,准确地计算出应控制的节气门开度,进而实现对车辆纵向车速的精准控制。 逆动力学模型的生成首先需要收集大量的发动机动力学特性数据。这些数据包括发动机在不同转速下的扭矩输出特性、节气门开度与进气量的关系、以及发动机对车速的影响等。有了这些数据后,就可以通过数学建模方法构建出发动机的逆动力学模型。 在逆动力学模型中,输入参数是发动机的扭矩和转速,输出则是节气门开度。节气门开度是控制发动机进气量的部件,进而影响到发动机的输出扭矩,最终影响车辆的加速或减速。在模型中,扭矩转速到节气门开度的映射关系被定义为一个函数或映射表,这样就可以根据实时的扭矩转速数据快速准确地计算出节气门开度,从而达到控制车速的目的。 逆动力学模型的应用可以极大地提升车辆的燃油经济性和驾驶平顺性。例如,在需要加速时,模型可以根据驾驶员的需求,计算出一个最优的节气门开度,既能满足加速的需求,又能避免不必要的燃油消耗。在需要减速时,模型同样能根据当前车速和路面情况,计算出合理的节气门开度,以实现平滑减速。 逆动力学模型的生成技术是现代汽车电子控制技术中的一个重要方面。在实际应用中,逆动力学模型通常会结合车辆的其他控制模块(如ABS防抱死系统、稳定性控制系统等)共同工作,以实现更全面的车辆动态控制。 此外,逆动力学模型生成技术在新能源汽车中也有着广泛的应用。例如,在混合动力汽车中,逆动力学模型可以根据发动机的运行状态和电池的充放电状态,精确地控制节气门开度,以实现最佳的能源管理。 在技术发展的过程中,逆动力学模型的生成也在不断地优化和改进。通过采用先进的数据处理和数学建模方法,模型的预测能力和准确性不断提高,更好地适应复杂的实际驾驶环境。 基于发动机动力学特性的逆动力学模型生成技术是一项高度复杂的工程技术,它通过数学建模和数据分析,将车辆动力系统的工作原理和控制逻辑进行抽象和模拟,为现代汽车提供了一个智能化的控制手段,使得车辆的动力系统更加高效、安全、环保。
2025-05-17 14:51:44 2.35MB
1
在本文中,我们将深入探讨如何使用STM32F4微控制器来实现光照度的检测,具体是通过集成的BH1750传感器进行测量,并将结果显示在OLED(有机发光二极管)显示屏上。STM32F4是一款高性能的ARM Cortex-M4内核微控制器,具有丰富的外设接口和强大的计算能力,非常适合于这种实时数据处理的应用。 我们需要了解BH1750传感器。BH1750是一种数字型光强度传感器,它能够精确地测量环境光照强度,并以数字信号输出。该传感器具有低功耗、高精度以及宽动态范围的特点,适用于各种光照条件下的应用,如智能家居、环境监测等。 在与STM32F4连接时,我们通常会使用I2C(Inter-Integrated Circuit)总线通信协议。STM32F4内置了多个I2C接口,可以方便地与BH1750进行通信。为了初始化I2C接口并设置BH1750的工作模式,我们需要编写相应的驱动程序。这包括设置I2C时钟、配置GPIO引脚、初始化I2C外设以及发送控制命令到传感器。 BH1750提供了多种工作模式,如一次测量模式、连续测量模式等。根据应用需求,我们可以选择适合的模式。例如,如果只需要偶尔获取光照强度,可以选择一次测量模式;如果需要连续监控光照变化,可以选择连续测量模式。在发送命令后,STM32F4会等待传感器完成测量并读取数据。 数据读取完成后,我们需要解析BH1750返回的数字值,这个值通常以Lux(勒克斯)为单位,表示光照强度。解析后的数据可以存储在STM32F4的内存中,然后通过OLED显示屏进行展示。 OLED显示屏是一种自发光的显示技术,每个像素单元都能独立控制亮度,因此对比度高且响应速度快。STM32F4通常通过SPI(Serial Peripheral Interface)或I2C接口与OLED模块通信。我们需要编写OLED显示驱动程序,包括初始化OLED屏幕、设置文本位置、颜色以及绘制文本或图形。 在显示光照强度数据时,可以设计一个简单的用户界面,例如在OLED屏幕上显示实时的Lux数值,并可能添加一些附加信息,如时间戳或最小/最大光照值。为了使显示更加直观,还可以考虑使用图形元素,如进度条或颜色映射来表示光照强度。 实现STM32F4的光照度检测项目需要以下步骤: 1. 配置STM32F4的I2C和SPI接口。 2. 编写BH1750传感器的驱动程序,包括初始化、发送命令和读取数据。 3. 解析从传感器获取的光照强度数据。 4. 编写OLED显示驱动程序,设计合适的用户界面。 5. 实现数据更新和显示逻辑。 通过以上步骤,我们可以构建一个完整的光照度监测系统,不仅可以实时获取环境光强,还可以通过OLED显示屏直观地呈现这些信息。这个项目对于学习嵌入式系统开发、传感器应用以及人机交互设计都有着重要的实践意义。
2025-05-16 10:53:06 9.79MB BH1750 STM32F4 OLED显示
1