内容概要:本文档是2024年由多家单位共同编制的关于AI技术与工业互联网融合发展及相关安全问题的详尽研究报告。主要内容涵盖AI+工业互联网的主要应用场景,探讨其带来的生产效率提升与企业竞争力的增强,也详细剖析了各个场景如工业制造、石油化工、矿山冶金和电力能源中存在的安全风险,以及针对这些风险提出的综合治理方案和技术实现细节。文中特别介绍了‘1266’架构——一种针对AI+工业互联网构建的安全体系架构。此外,文档还包括多个实际案例的研究,显示了具体技术实践及效果。 适合人群:工业领域的IT安全管理人员、技术专家及企业管理层。 使用场景及目标:为希望深入了解AI在工业互联网领域应用的个人和企业提供理论基础和实用参考;旨在通过介绍最新的安全技术和实践案例,帮助企业构建完整的工业互联网安全防护体系,确保系统稳定与数据安全。 其他说明:该文件还对未来发展方向做了简要讨论,强调政策支持、技术创新和社会责任共同推动AI技术在未来工业互联网安全领域的作用。建议读者紧跟最新政策导向,并积极参与到标准建设和自主研发中来,以促进该行业的健康发展。
2025-12-02 13:07:13 2.06MB 工业互联网 AI安全 网络攻防 风险评估
1
《2023年江西省“振兴杯”工业互联网安全技术技能大赛部分赛题解析》 在当前数字化转型的大潮中,工业互联网安全成为了至关重要的环节。本次大赛聚焦于网络安全和制造领域的结合,通过一系列竞赛题目,旨在提升参赛者对工业互联网安全的理解与实践能力。下面我们将对描述中涉及的部分赛题进行深入解析。 赛题涉及到的是Modbus协议的分析。Modbus是一种广泛应用于工业控制设备中的通信协议,主要关注的是数据传输的准确性。在分析过程中,观察到数据包呈现出叠加方式,这意味着参赛者需要关注每个数据包的累积效应,通过追踪TCP流数据来过滤掉不必要的空格和其他符号,以确保数据的完整性和有效性。 赛题提到了异常流量的识别。"S7Error"提示参赛者寻找S7协议中的错误码0x83。S7协议是西门子PLC(可编程逻辑控制器)使用的通信协议,错误码0x83通常表示通信错误。参赛者需要通过过滤出s7comm.param.errcod == 0x8383的数据包,进一步分析可能导致的系统异常或潜在的安全问题。 再者,赛题中还涉及了数据包编号213056的相关信息。这可能是一项关于数据完整性或特定事件的挑战,参赛者需要关注这个特定编号的数据包,从中可能可以找到关键的“Flag{213056}”,揭示隐藏的信息。 在信息安全领域,隐写术也是常见的技巧之一。LSB隐写利用图像的最低有效位来隐藏信息,本题中提到的数据被保存为ZIP文件,并包含一个名为.cmp的文件。参赛者可能需要使用组态软件来恢复这个文件,然后进行简单的计算操作,以揭示隐藏的密码或信息。 博图V16是一款西门子的工程软件,用于编写和调试PLC程序。在这个环节,参赛者需要打开工程文件,按照题目要求修改登录日志,这可能涉及到逆向工程和代码审计,以找出潜在的安全漏洞。 此外,赛题还涉及了文件类型判断和反汇编分析。从样本文件sample1.exe中,参赛者需要识别出这是Python程序打包成的可执行文件,从中提取出如iec104_control.pyc等文件,这些可能是恶意指令的载体。使用IDA(Interactive Disassembler)这样的反汇编工具,对文件进行分析,寻找可能的加密或解密算法,以及隐藏的flag。 固件后门的分析是另一项挑战。参赛者需要根据题目要求,寻找设备中的后门入口,这可能需要深入到二进制代码层面,通过搜索字符串、分析程序结构来定位潜在的密钥或访问控制机制。 这次大赛涵盖了工业互联网安全的多个层面,包括但不限于协议分析、异常流量检测、隐写术应用、代码审计、文件类型识别以及固件安全。通过这样的实战演练,参赛者不仅能提升专业技能,更能加深对工业互联网安全复杂性的理解,为未来应对现实世界中的安全挑战做好准备。
2025-11-18 22:26:33 2.3MB 网络安全
1
主要是关于人工智能、大语言模型、ChatGPT、Deepseek等各类AI学习的相关资料、文档。
2025-11-18 11:21:50 34.27MB 人工智能 AI学习
1
智能制造和工业互联网是当今制造业转型升级的重要方向,它们通过数字化技术的集成应用,实现企业的智能化管理,提高生产效率和产品质量,同时降低运营成本。智能制造工业互联网数化智能工厂解决方案主要包括MES(制造执行系统)、WMS(仓库管理系统)和ERP(企业资源计划)等信息化系统。这些系统能够实现生产过程的精细化管理,促进物流全程追溯,提供成本管理和财务分析,支持业务的透明化和全追溯,进而构建竞争优势。 在工业互联网领域,政府推动物联网的发展,使工业实体经济实现效益化经营。通过采用条码、RFID等技术,企业可以对物流进行全程追踪,同时借助云计算技术实现与上下游企业的电子交易及信息共享。企业可以将内部软件应用部署到云端,利用公有云软件(SaaS)实现协同计划,促进企业制造和服务化转型,以及工厂数字化转型。 智能制造整体解决方案还包括客户关系管理(CRM)的加强,推动制造商从“以产品为中心”转向“以客户为中心”的经营策略。通过建设信息化系统如MES,加强生产过程管理,实现制造透明化和过程全追溯。面临的主要问题包括创新乏力、人口红利丧失、制造业产能外迁、过剩形势严峻、生产效率低下、管理不善、透明性差和用工荒等。因此,中国提出了创新驱动、智能转型、网络化、数字化、智能化的发展战略,包括工业互联网营销模式创新和服务模式创新等。 在国家制造业创新方面,提出了“中国制造2025”的核心目标与战略规划,主要聚焦于互联网+的主线,即信息化与工业化深度融合,以及智能制造核心关键。国家战略中还包括了网络化、数字化、智能化的国家制造业创新中心建设工程,以及高端装备、生物医药、航空航天装备、先进轨道交通装备、节能与新能源汽车、新材料、高性能医疗器械等十大重点领域。 工业互联网平台整体架构分为四个层面:设备层、边缘层、平台层(工业PaaS)、应用层(工业SaaS)。设备层负责设备接入和边缘数据处理;边缘层进行协议解析和边缘数据处理;平台层提供通用PaaS平台资源部署和管理;应用层包括业务运行、应用创新、分析优化、服务应用等。通过工业微服务组件库、工业数据建模和分析以及工业大数据系统,可以实现工业应用层的多样化需求。 智能制造的本质理解是对企业现有流程和生产组织方式的重新审视,利用最新工业工程及IT网络技术实现经营创新,推动企业向生产智能、管理智能化、运营智能方向转型。智能制造整体方案基于工业互联网智能制造整体解决框架,包括经营分析、财务分析、制造分析、决策辅助智能分析,以及数字营销、互联网采购、协同设计、定制服务、云服务等。方案还涉及产业互联化设计制造一体化、供应链协同、智慧财税、网络质量管控、精细成本管理、人力资源智能管理等。 随着技术的进步,智能制造整体应用方案涵盖了智能分析、营销分析、采购分析、库存分析、财务分析、绩效分析等。企业社交、协同办公、协同云、移动门户、社交化业务、即时通信、人力资源服务、薪酬服务、合同管理、内部交易、销售信用等也得到广泛应用。 工业互联网+智能制造整体应用方案通过云计算、边缘计算、人工智能、物联网等技术集成,实现CNC/DNC、PLCs、机器人、检验检测、感知仪表仪器、DCS、WCSs、CLOUDs等设备资源的智能管理化排程与调度。这些技术应用促进企业生产过程管理、质量过程控制、制造物流管理、能源环境管理等环节的智能化。 智能制造和工业互联网方案通过综合应用信息化和智能化技术,推动制造业的创新发展,解决生产过程中的诸多问题,提高整体生产效率和产品质量,增强企业的市场竞争力,同时为经济的可持续发展做出贡献。智能制造的本质在于通过技术赋能企业实现全面的智能化转型,以满足市场对敏捷、个性化和高质量服务的需求。
2025-10-23 08:47:11 23.67MB
1
工业互联网是一种新型的经济形态,它基于工业数据,运用大数据技术,贯穿于工业设计、工艺、生产、管理、服务等全生命周期,使工业系统具备描述、诊断、预测、决策、控制等智能化功能。其发展历史可以追溯到工业1.0的机械化时代,发展至今已经经历了电气化与自动化、信息化与数字化、智能化与物联网等阶段。 工业互联网的核心技术包括大数据技术、网络技术、平台技术等。其架构主要由企业运营层基础平台、设备连接层等构成。它有三个层次,即一个个网络、二个主题、三个集成。这种架构有利于实现工业生产的优化、动态感知、决策和执行。在工业4.0时代,工业互联网更是被赋予了新的特征,如智能化、网络化、服务化、个性化等。 工业互联网的应用场景广泛,例如可以应用于解决工业生产中的质量缺陷,指导工业设备故障、生产问题,形成新的解决方案。例如,通过从5M要素(即物料、机器、方法、人力、测量)获取数据,利用大数据建模,发现数据中有价值的信息,从而提出解决方案。 高端装备的健康管理是工业互联网应用的一个重要方面。健康管理的定义是指使用高科技的监控和分析手段,对装备进行实时监测和维护,以提高其可靠性和使用寿命。其关键技术包括传感器技术、大数据分析技术、远程监控技术等。 工业互联网面临的机遇包括为各行业提供新的解决方案,提升生产效率,实现智能化生产等。同时,工业互联网的发展也面临着挑战,例如如何实现工业数据的安全可靠,如何处理工业互联网平台的开放性与企业核心竞争力之间的矛盾等。 工业互联网正日益成为推动工业发展的重要力量。了解工业互联网的定义、特点、技术架构、应用场景以及高端装备健康管理的知识,将对推动工业发展具有重要意义。随着技术的不断发展,工业互联网将会更好地服务于工业生产,为人类社会的经济与社会发展提供强大动力。
2025-10-23 07:57:08 7.7MB
1
近年来通过工业化和信息化的深度融合,中国平煤神马集团(以下简称“平煤神马”)经历了数字化、平台化、可视化和移动化改造。为了提升企业的经济创新力和生产力,推动企业转型升级、技术进步、效率提升和组织变革,实现企业安全、高效、绿色和智慧发展,平煤神马正在实施智能化改造。分析了智慧企业发展路径,介绍了集团智能化发展的背景、现状和目标,通过考察、调研、立项、论证后,详细阐述了集团确定的工业互联网“六大平台”的具体建设内容。
2025-08-20 16:25:34 10.21MB 智能化改造 工业互联网平台 智慧企业
1
工业互联网协议模拟器是一款专为工业自动化领域设计的软件工具,它允许用户模拟各种PLC(可编程逻辑控制器)通信协议,以便在不实际连接硬件设备的情况下进行测试、调试和学习。这款模拟器对于开发、集成和维护工业控制系统至关重要,尤其是在制造行业中,它能帮助工程师们高效地验证和优化他们的系统。 HslCommunication(5.3.2.0)是这个压缩包中的主要程序文件,可能是一个库或应用程序,用于实现各种工业协议的模拟功能。这个版本号(5.3.2.0)表明它是该软件的一个特定更新迭代,通常意味着它包含了之前的错误修复、性能改进以及可能的新功能。 在工业互联网中,通信协议是设备之间交换信息的关键。常见的PLC通信协议包括: 1. **MODBUS**:这是一种广泛使用的串行通信协议,允许PLC与其他设备如SCADA系统进行数据交换。模拟MODBUS协议可以帮助开发者测试MODBUS设备的兼容性和功能。 2. **EtherNet/IP**:由Rockwell Automation开发,基于TCP/IP协议,是工业以太网通信的一种标准。模拟EtherNet/IP可以验证设备之间的网络连接和数据传输。 3. **PROFINET**:由西门子提出,是基于工业以太网的实时通信协议,支持I/O数据、运动控制、过程数据等多种应用。通过模拟PROFINET,可以确保系统在复杂网络环境下的正确运行。 4. **OPC UA**:统一架构(OPC Unified Architecture)是OPC基金会推出的新一代通信标准,提供安全、可靠的数据交换,支持多种平台和设备。模拟OPC UA有助于验证服务器和客户端的互操作性。 使用这样的协议模拟器,工程师可以: - **测试新设备**:在将新设备集成到现有系统之前,模拟通信协议可以验证设备是否符合预期的通信规范。 - **故障排除**:当系统出现故障时,模拟器可以用来模拟问题场景,帮助定位和解决问题。 - **培训与教育**:它也适用于教学和培训,让工程师和学生了解不同协议的工作原理和交互方式。 工业互联网协议模拟器通过模拟各种工业协议,极大地提升了研发和维护过程的效率,降低了成本,并确保了制造系统的稳定性和可靠性。通过HslCommunication(5.3.2.0)这样的工具,工程师可以更加深入地理解和控制他们的工业网络,从而推动制造行业的数字化和智能化进程。
2025-07-12 20:40:13 28.01MB
1
内容概要:文章详细介绍了美的集团自2012年以来的数字化转型历程,分为六个阶段,涵盖了从信息系统一致性变革到当前的DTC、海外全价值链数字运营。美的集团通过数字化转型解决了客户需求快速变化、产品同质化竞争、跨层业务协同难题、全球化研发体系不完善以及企业生产经营风险等问题。转型过程中,美的集团逐步实现了从产品、购买、设计、制造、运输、交付等全价值链的数字化运营,显著提升了企业的盈利水平、营运能力和管理效率。美的集团还通过建立智能工厂、工业互联网平台、大数据平台等,实现了智能制造和数据驱动的决策。; 适合人群:家电制造企业高管、数字化转型项目负责人、制造业企业管理者、企业战略规划师等。; 使用场景及目标:①了解制造业企业如何通过数字化转型提升竞争力;②学习美的集团在不同阶段的转型策略及其具体实施措施;③借鉴美的集团的成功经验,应用于自身企业的数字化转型实践中。; 其他说明:美的集团的数字化转型是一个持续的过程,本文提供的案例为当前情况下的阶段性成功案例,可供其他制造业企业参考。美的集团的转型不仅带来了技术上的革新,也促使企业组织架构和管理模式的变革,强调了人才培养和技术创新的重要性。
1
工业互联网智能制造深层剖析.
2025-05-05 13:21:39 16.98MB
1
为贯彻落实全省工业和信息化工作会议精神,大力培育河南省高素质网络安全技术技能人才队伍,推动我省工业互联网安全政策、技术和产业协同创新发展,支撑制造强省和网络强省建设,根据中国信息通信研究院印发《关于组织开展2024年中国工业互联网安全大赛选拔赛的通知》要求,经研究,决定举办2024年中国工业互联网安全大赛河南省选拔赛。本次竞赛内容由初赛和复赛两部分组成:第一部分为初赛(理论知识选拔赛),包含工业信息安全领域理论知识竞赛、CTF竞赛;主要考核参赛选手对网络安全及工业互联网安全相关政策法规、基础知识的掌握情况以及技术应用水平。考点范围包括但不限于Web安全、密码学、逆向工程、破解等技术领域。第二部分为复赛(安全技术实操赛),包含虚拟场景实战竞赛、实体场景安全运维赛。考核选手在工业互联网安全领域知识和技能应用水平,包括但不限于物联网、移动通信及5G、人工智能及自动化、智能制造、工控安全等应用方向,以及相关工业互联网应用场景安全实操技能。
2025-04-28 17:55:22 12.14MB 网络安全 工业互联网
1