开关电源EMC传导整改总结 本文旨在总结开关电源EMC传导整改的相关知识点,包括传导干扰测试、差模干扰和共模干扰的概念、EMI原理、测试数据分析和整改对策。 一、传导干扰测试 传导干扰测试是指对开关电源的EMC测试,旨在检测电源中的传导干扰。传导干扰可以分为两类:差模干扰和共模干扰。 二、差模干扰 差模干扰是指存在于L-N线之间的电流,电流从L进入,流过整流二极管正极,再流经负载,通过热地,到整流二极管,再回到N。在这条通路上,有高速开关的大功率器件,有反向恢复时间极短的二极管,这些器件产生的高频干扰,都会从整条回路流过,从而被接收机检测到,导致传导超标。 差模干扰的整改对策: 1. 增大X电容容值 2. 增大共模电感感量,利用其漏感,抑制差模噪声 三、共模干扰 共模干扰是因为大地与设备电缆之间存在寄生电容,高频干扰噪声会通过该寄生电容,在大地与电缆之间产生共模电流,从而导致共模干扰。 共模干扰的整改对策: 1. 加大共模电感感量 2. 调整L-GND,N-GND上的LC滤波器,滤掉共模噪声 3. 主板尽可能接地,减小对地阻抗,从而减小线缆与大地的寄生电容 四、EMI原理 开关电源EMI原理部分:图中CX2001为安规薄膜电容(当电容被击穿或损坏时,表现为开路)其跨在L线与N线之间,当L-N之间的电流,流经负载时,会将高频杂波带到回路当中。此时X电容的作用就是在负载与X电容之间形成一条回路,使的高频分流,在该回路中消耗掉,而不会进入市电,即通过电容的短路交流电让干扰有回路不串到外部。 五、测试数据分析 通过测试数据可以看出,差模干扰和共模干扰的存在都会导致传导超标。因此,在设计和测试过程中,需要对差模干扰和共模干扰进行检测和整改,以确保开关电源的EMC性能。 本文总结了开关电源EMC传导整改的相关知识点,包括传导干扰测试、差模干扰和共模干扰的概念、EMI原理、测试数据分析和整改对策,为开关电源设计和测试提供了有价值的参考。
2025-10-10 18:05:21 74KB
1
NCP1252是一款专为AC-DC开关电源设计的控制器,它集成了多种功能以构建低成本、高效率且可靠的AC-DC开关电源。这款控制器特别适用于正向和反激式电源转换应用,并具备电流模式PWM控制功能。 该控制器具备一些显著的特点,其中包括:峰值电流模式控制、可调开关频率高达500kHz、以及抖动频率功能,其开关频率可以在±5%的范围内波动。NCP1252采用了SOIC-8和PDIP-8两种封装形式,有助于节省PCB空间,并且在成本敏感型项目中提供了一个理想的解决方案。 此外,NCP1252还提供了多重保护功能。其中包括带固定延迟(10ms)的过流保护,以及可扩展至150ms延迟的其他版本。它还具备内部延迟操作器启动功能,可确保在A、B和C版本中实现启动。该控制器还具有内部过压锁定和欠压锁定功能,用于检测并保护过载和欠压情况,避免损坏。 NCP1252的电流限制与斜率补偿功能也使得其性能更加稳定。这款控制器支持高达1A的可调启动定时器,以及带内部160ns前沿消隐的棕色检测功能。在供电方面,它支持从28V到400V的输入电压范围,并具备在输入电源恢复后自动恢复正常工作的能力。 该控制器还提供了不同的标记图和占空比选项,包括A、B、C、D和E版本的占空比。例如,A版本的最大占空比为50%,而B版本为80%。在D和E版本中,占空比还带有额外的扩展和限制。 NCP1252适合用于离线控制器应用,帮助改善转换器的安全性。它的延迟功能可防止因短路或其他异常情况而造成不必要的损坏,确保了整个电源系统的安全运行。 NCP1252是一款适用于多种电源转换应用的高性能控制器,其集成的多种功能和保护机制使其成为了设计高效和可靠AC-DC开关电源的理想选择。其特性包括电流模式PWM控制、高频率开关能力、过流和过压保护、以及适用于多种应用场合的灵活占空比控制。此外,这款控制器的低成本和较小的PCB空间占用,使其在成本敏感型的项目中具有极高的吸引力。
2025-10-09 13:53:25 796KB
1
开关变压器: 变压器线圈电感量计算-陶显芳pdf,开关变压器: 变压器线圈电感量计算-陶显芳
2025-09-22 22:12:28 855KB 开关电源
1
DC-DC开关电源PCB布局及布线是电源设计领域的一个重要环节,它直接关系到电源的工作效率、稳定性和电磁兼容性。设计高性能的DC-DC开关电源,需要综合考虑电路的稳定性、效率、热管理和电磁兼容性等多方面因素。PCB布局是其中的关键步骤,它涉及将电源模块的各个元件按照电路原理图合理地放置在印制电路板上,而布线则是指按照电路的连接关系,将这些元件通过导电路径相互连接起来。 在进行DC-DC开关电源PCB布局时,首先应根据电路功能和信号流向合理规划各个部分的摆放区域,确保电源模块中功率较大的部分与信号处理部分有恰当的隔离。例如,功率开关器件、变压器、输入输出滤波电容等元件应优先放置,并考虑其发热和散热问题。同时,应保证这些元件之间的连接路径尽可能短、直接,以减少寄生参数的影响。此外,对于高速开关器件的驱动回路,应尽量使用微带线和带状线布局,以控制信号回路的阻抗匹配,减小电磁干扰。 布线是PCB设计中的又一关键技术,它需要保证信号传输的完整性和抗干扰能力。在布线过程中,要遵循一些基本原则:应该选择合适的线宽,对于高电流路径,应使用较宽的铜箔以减少电阻损耗;要注意避免或减少信号回路的环形面积,尤其是在高速数字信号传输中,避免环形天线效应;再者,模拟信号线和数字信号线应该相互隔离,特别是在敏感的模拟电路附近,应避免高速数字信号的干扰。 在实际操作中,可以使用专业的PCB设计软件,如Altium Designer、Cadence OrCAD等,这些软件提供了丰富的布局布线功能和设计验证工具。设计者可以在软件中导入原理图,根据设计规则进行元件布局,然后再进行自动或手动布线。一些软件还支持设计规则检查(DRC)和电路仿真功能,可以在布线前预测和修正可能存在的问题。 在本例中,提到的TPS54550-DCDC电源模块素材练习,表明了这是一个特定型号的电源模块设计练习。TPS54550是一款常用的同步降压型DC-DC转换器,适用于多种电源应用场景。通过这类练习,设计者可以熟悉特定型号电源模块的PCB设计流程,掌握其布局和布线的要点。而FanySkill4AD_V1.3.0.rar则可能是相关的练习资料或软件工具版本,设计者可以从中获取设计指导和工具支持。 DC-DC开关电源PCB布局及布线是一项复杂的工作,需要设计者具备扎实的电力电子知识、电路设计经验和PCB设计技能。通过不断的实践和学习,设计者可以逐步提高电源模块的性能和可靠性。
2025-09-21 19:22:44 3.3MB
1
三相维也纳功率因数校正(PFC)技术是电力电子领域的一个重要分支,它的主要作用是改善交流电源输入端的功率因数,使电能的使用更加高效。开关电源技术则是通过使用半导体开关器件来调节电源电压或电流,以实现电源的高效、稳定、小型化。当这两种技术结合时,能够得到性能更加优越的电源设备,例如本案例中的三相AC输入无桥PFC±400VDC输出开关电源。 该开关电源已经经历了两年的量产,技术成熟稳定,这在产品的生命周期中是一个相当长的时间,足以证明其性能的可靠性和市场的认可度。它支持三相AC输入,无桥设计意味着结构更加简洁,减少了部件数量,降低了故障率,提高了效率,同时也使得系统的整体成本更加低廉。该电源输出稳定的±400VDC,这在工业应用中具有广泛的需求,例如在通信设备、电动汽车充电站以及工业自动化设备中。 提供的源代码、原理图和PCB资料齐全,这对于工程师来说是一个非常宝贵的信息,因为它不仅能够帮助他们更好地理解产品的工作原理,还能够根据这些资料进行产品定制化开发或是故障排除。此外,这种透明度在商业合作中也起到了积极作用,它增强了合作伙伴的信任,加速了项目的推进速度。 除了上述的三相维也纳PFC技术,文档中还提到了其他两种成熟方案——移相全桥和LLC。这两种技术同样是开关电源领域的先进技术,它们通过优化开关频率、工作模式等参数,实现了高效率和低电磁干扰的特点。移相全桥是一种成熟的软开关技术,通过控制高频功率开关的相位,达到减少开关损耗,提高转换效率的目的。而LLC谐振转换器是一种利用谐振现象进行能量转换的电路结构,它在高频开关应用中具有很高的效率和良好的负载适应性。 文档名称中出现的“技术深度解析”、“设计与应用”、“技术成熟方案下的电力转换艺术”、“技术分析与量产两年成果展示”、“成熟方案与实现细节”等词汇,揭示了文档内容不仅关注于理论分析,更着重于实际应用和方案的实现细节。这为相关领域的技术人员提供了从理论到实践的完整知识链路,有助于他们更深刻地理解技术细节,并能够将这些知识应用到实际的设计和开发工作中。 另外,从文件名列表中可以得知文档可能包含了设计说明、技术分析、应用案例以及成果展示等方面的内容。这使得本套资料不仅适用于研发人员,也适合市场和销售人员,甚至是非专业人士进行阅读和理解,从而在更广泛的范围内传播三相维也纳PFC技术以及开关电源技术。 本套资料提供了一个全面的技术解决方案,通过详尽的文档资料,详细地解释了三相维也纳PFC技术及其在开关电源领域的应用,对于从事电源设计和相关领域的工程师来说,是一份不可多得的学习和参考资料。
2025-09-19 14:34:03 180KB gulp
1
正激式开关电源输出电感器设计步骤(华为)pdf,
2025-09-18 20:43:01 876KB 开关电源
1
《Buck变换器的闭环控制在Matlab Simulink中的实现》 Buck变换器是一种广泛应用的直流-直流(DC-DC)转换器,它能够将高电压转换为低电压,广泛应用于电子设备的电源管理中。在实际应用中,为了确保输出电压的稳定性和快速响应,通常会采用闭环控制策略。本主题主要围绕Buck变换器的闭环控制概念,以及如何利用Matlab Simulink进行建模和仿真。 1. Buck变换器基本原理 Buck变换器的核心工作原理是通过开关元件(如MOSFET或IGBT)的通断来改变输入电压对负载的平均供电比例,从而调节输出电压。其基本结构包括电感、电容、开关元件和二极管。 2. 闭环控制系统 在闭环系统中,Buck变换器的输出电压被实时监测并与设定值比较。这个比较结果作为反馈信号,通过控制器(如PID控制器)调整开关元件的占空比,使得输出电压尽可能接近设定值。这样的设计提高了系统的稳定性,增强了对外部环境变化和负载波动的适应性。 3. PID控制器 PID控制器是闭环控制系统中最常见的控制器之一,由比例(P)、积分(I)和微分(D)三个部分组成。比例项即时响应误差,积分项消除稳态误差,微分项则提前预测误差趋势,三者结合可以实现快速且稳定的控制。 4. Matlab Simulink的应用 Matlab Simulink是一个强大的系统级建模和仿真工具,特别适合于电力电子系统的建模与分析。在这个项目中,我们可以建立Buck变换器的Simulink模型,包括开关元件、电感、电容、控制器等组件。然后,通过"basic_buck_converter_with_PID_controller.mdl"模型,可以看到如何将PID控制器集成到Buck变换器中,实现闭环控制。 5. 无补偿器与带补偿器的比较 "basic_buck_converter_without_compensator.mdl"模型展示了没有PID控制器的Buck变换器,其输出电压可能会受到负载变化和输入电压波动的影响,稳定性较差。而加入PID控制器后,系统能更快地响应这些变化,保持输出电压的稳定。 6. 许可证文件 "license.txt"是软件许可文件,通常包含了使用模型或代码的法律条款和限制,用户在使用相关模型时应遵循这些规定。 总结,通过Matlab Simulink,我们可以直观地理解和分析Buck变换器的闭环控制机制,掌握PID控制器在实际系统中的应用,并通过仿真观察其性能。这不仅有助于理论学习,也有利于实际工程中的设计和调试。
2025-09-15 13:41:30 23KB
1
一款200W高效能开关电源的设计方案,采用了PFC(功率因数校正)、LLC谐振变换器和同步整流技术。该电源支持12V和24V双电压输出,具有高达94%的效率和超过0.98的功率因数。文中不仅提供了详细的电路参数、PCB布局、变压器电感参数和BOM清单,还展示了PFC、LLC和同步整流的关键控制代码及其工作原理。此外,该设计方案在紧凑的空间内实现了高性能,适用于多种应用场景。 适合人群:电力电子工程师、硬件设计师、从事电源设计的技术人员。 使用场景及目标:①用于工业设备、消费电子产品和其他需要高效电源供应的场合;②帮助工程师理解和实现高效率、高功率因数的开关电源设计。 其他说明:该方案不仅提供了理论和技术细节,还包括实用的工程数据,如PCB布局和元件清单,便于实际生产和应用。
2025-09-06 22:24:03 459KB
1
### 单端反激式开关电源设计步骤详解 反激式开关电源因其结构简单、成本低廉及适用范围广泛等特点,在小功率电源系统中被广泛应用。本文将基于给定的文件内容,详细介绍单端反激式开关电源的设计步骤,并对每个步骤进行深入解析。 #### 一、电源输出功率 首先需确定电源的输出功率 \( P_O \),这一步骤至关重要,因为输出功率直接影响到后续设计中的元件选择。公式如下: \[ P_O = \sum_{i} (V_{OUT_i} \times I_{OUT_i} + V_{D_i}) \] 其中,\( V_{D_i} \) 为第 i 路输出整流二极管的正向导通压降。通常情况下,可以选择肖特基二极管或超快恢复二极管。如果采用肖特基二极管,则 \( V_{D_i} \) 大约为 0.4V;如果是超快恢复二极管,则 \( V_{D_i} \) 大约为 0.6V。 #### 二、输入端电容 输入端电容 \( C_{in} \) 的选择也非常重要,它直接影响到电源的稳定性。一般来说,其最小值应满足以下条件: \[ C_{in} \geq (2 \sim 3) \times \frac{P_O}{f_L} \] 这里,\( f_L \) 是交流输入电压的频率。 #### 三、输入最小直流电压 接下来需要确定输入的最小直流电压 \( U_{dcmin} \),该值可以通过以下公式计算得出: \[ U_{dcmin} = \sqrt{2} \times U_{acmin} - \frac{2 \times P_O \times t_C}{f_L \times C_{in} \times \eta} \] 其中,\( t_C \) 为整流桥导通时间,通常取值为 3.2ms;\( \eta \) 表示电源效率。 #### 四、输入最大直流电压 输入的最大直流电压 \( U_{dcmax} \) 直接由交流输入最大电压 \( U_{acmax} \) 确定: \[ U_{dcmax} = \sqrt{2} \times U_{acmax} \] #### 五、最大占空比 在选择PWM控制芯片时,为了确保系统的稳定性,最大占空比 \( D_{max} \) 通常不超过 0.5。 #### 六、反激电压 反激电压 \( U_{OR} \) 可以通过以下公式计算: \[ U_{OR} = U_{dcmin} + U_{ds} - D_{max} \times (U_{dcmin} + U_{ds}) \] 这里,\( U_{ds} \) 为开关管饱和导通压降,一般取值为 10V。 #### 七、开关管漏源最低耐压 开关管的漏源最低耐压 \( U_{mos-min} \) 可以通过以下经验公式估算: \[ U_{mos-min} = 1.4 \times U_{dcmax} + 1.5 \times U_{OR} \] #### 八、工作模式与电流纹波峰值比 根据实际应用需求,可以设定变换器的工作模式为电流连续模式(CCM)或电流断续模式(DCM)。不同的工作模式对应不同的电流纹波峰值比 \( K_{RP} \): - CCM 模式:\( K_{RP} < 1 \) - DCM 模式:\( K_{RP} = 1 \) #### 九、确定开关频率 开关频率 \( f \) 的选择需要考虑所选芯片的支持能力和开关管的开关能力。通常,开关频率的选择会影响到效率和成本之间的权衡。 #### 十、选择磁芯 磁芯的选择对于整个电源的性能有着至关重要的影响。面积乘积法是一种常用的计算方法,可以根据不同的工作模式计算出面积乘积 \( A_p \): - CCM 模式: \[ A_p \geq \frac{1.5}{1-D_{min}} \times \frac{P_O}{f \times B_{m} \times J_k \times \eta} \] - DCM 模式: \[ A_p \geq \frac{1.5}{D_{max}} \times \frac{P_O}{f \times B_{m} \times J_k \times \eta} \] 这里,\( D_{min} \) 为最小占空比;\( B_{m} \) 为最大磁通密度;\( J_k \) 为电流密度。 #### 十一、确定电流平均值 原边电流平均值 \( I_{avgp} \) 的计算公式如下: \[ I_{avgp} = \frac{P_O}{U_{dcmax} \times D_{max} \times \eta} \] #### 十二、确定原边峰值电流 原边峰值电流 \( I_{pkp} \) 的计算公式为: \[ I_{pkp} = I_{avgp} \times \left(2 + \frac{1}{K_{RP}}\right) \] #### 十三、确定开关管能承受最小电流 开关管能承受的最小电流 \( I_{mos-min} \) 计算公式为: \[ I_{mos-min} = 1.5 \times I_{pkp} \] #### 十四、确定原边有效值电流 原边有效值电流 \( I_{rmsp} \) 的计算公式如下: \[ I_{rmsp} = I_{pkp} \times \sqrt{\left(\frac{1}{3} + \frac{1}{K_{RP}^2}\right)} \] #### 十五、确定初级电感量 初级电感量 \( L_p \) 的计算公式为: \[ L_p = \frac{U_{dcmax} \times D_{max}}{f \times I_{pkp} \times K_{RP}} \] #### 十六、确定最大磁通密度 最大磁通密度 \( B_m \) 一般取值范围为 0.2T~0.3T,以避免磁芯饱和。 #### 十七、原边匝数 原边匝数 \( N_p \) 的计算公式为: \[ N_p = \frac{1000 \times L_p}{I_{pkp} \times A_e \times B_m} \] 其中,\( A_e \) 为磁芯的有效截面积。 #### 十八、副边匝数 副边匝数 \( N_{si} \) 的计算公式为: \[ N_{si} = N_p \times \frac{V_{OUT_i} + V_{D_i}}{U_{OR}} \] #### 十九、偏置绕组匝数 偏置绕组匝数 \( N_B \) 的计算公式为: \[ N_B = N_p \times \frac{V_B}{U_{OR}} \] 这里,\( V_B \) 为偏置电压。 通过以上步骤,我们可以较为完整地完成单端反激式开关电源的设计。每一步都紧密关联,需要综合考虑电源的各项指标和实际应用需求来做出最佳选择。
2025-09-06 16:50:50 259KB 开关电源 设计步骤
1
内容概要:本文详细介绍了三相维也纳PFC开关电源这一成熟技术。首先概述了三相维也纳PFC的基本概念及其在电力系统中的重要性,强调其用于改善电力质量和提高功率因数的作用。接着阐述了开关电源的核心技术,特别是三相AC输入无桥PFC和±400V DC输出的特点。文中还展示了一个简化的PFC控制代码片段,解释了如何通过调整开关电源的导通时间来实现功率因数校正。最后提到该技术已经在市场上稳定运行两年,并成功量产,提供了完整的源代码、原理图和PCB等资料。 适合人群:从事电力电子技术研发的专业人士、对开关电源技术感兴趣的工程师和技术爱好者。 使用场景及目标:适用于需要高效、稳定电力供应的工业设备和电子产品制造商,旨在帮助他们理解和应用三相维也纳PFC技术,提升产品的电力性能。 其他说明:文中提供的资料和代码片段有助于加速新技术的研发和现有系统的改进,同时也为相关领域的研究提供了宝贵的参考资料。
2025-08-26 21:40:09 3.18MB
1