matlab+数据预处理+统计+异常值+检测+适用维度较小的数据 基于统计的异常值检测是一种利用统计学原理和技术来识别数据集中异常值或离群点的方法。这种方法通过考察数据集的统计特性来发现与其他样本显著不同的观测值。我们可以利用几种常见的方法,包括3σ(sigma)准则、Z分数(Z-score)和Boxplot(箱线图)。 ### 数据预处理之基于统计的异常值检测 #### 异常值的概念与重要性 异常值,也称为离群点,是指数据集中显著偏离其他数据点的观测值。这类数据通常被视为异常的原因在于它们可能源自不同的生成机制而非随机变化的结果。在实际应用中,异常值的检测对于确保数据质量至关重要,它可以揭示数据中存在的潜在问题或特殊情况,帮助我们及早发现问题并采取措施加以纠正。 #### 异常值检测的应用场景 异常值检测在多个领域都有广泛应用: 1. **制造业**:通过监控生产线上产品的数据,可以及时发现生产线上的问题并加以修正,从而提高产品质量。 2. **医疗保健**:通过对住院费用等医疗数据的异常检测,可以有效识别不合理的费用支出,帮助找出不规范的医疗行为,从而控制医疗费用不合理上涨的问题。 #### 常用的异常值检测方法 异常值检测方法多种多样,主要包括基于统计的方法、基于密度的方法、基于距离的方法、基于预测的方法以及基于聚类的方法等。不同类型的检测方法适用于不同类型的数据和应用场景。 ### 基于统计的异常值检测方法详解 基于统计的异常值检测方法主要包括以下几种: 1. **3σ准则** 2. **Z分数(Z-score)** 3. **Boxplot(箱线图)** #### 3σ准则 3σ准则是基于正态分布的性质来进行异常值检测的一种方法。具体来说,假设数据集中的数据服从正态分布,则大约有99.7%的数据点位于均值加减3个标准差的范围内。任何落在该范围之外的数据点都将被视为异常值。 **MATLAB示例代码**: ```matlab clear all clc data1 = xlsread('3.6 基于统计异常值检测案例数据.xlsx'); data = reshape(data1, [], 1); mu = mean(data); % 计算均值 sigma = std(data); % 计算标准差 outliers = data(abs(data - mu) > 3*sigma); % 识别异常值 disp('异常值:'); disp(outliers); ``` #### Z分数(Z-score) Z分数是一种衡量数据点与平均值之间差异的标准偏差数量。如果一个数据点的Z分数绝对值超过了一个特定的阈值(通常为3),那么这个数据点就可以被认定为异常值。 **MATLAB示例代码**: ```matlab clear all clc data1 = xlsread('3.6 基于统计异常值检测案例数据.xlsx'); data = reshape(data1, [], 1); mu = mean(data); % 计算均值 sigma = std(data); % 计算标准差 z_scores = (data - mu) ./ sigma; % 计算Z分数 outliers = data(abs(z_scores) > 3); % 识别异常值 disp('异常值:'); disp(outliers); ``` #### Boxplot(箱线图) 箱线图是一种图形化的数据分布展示方式,它利用四分位数来描绘数据集的大致分布,并且能够直观地识别出可能存在的异常值。在箱线图中,通常将位于上下边界之外的数据点视为异常值。 **MATLAB示例代码**: ```matlab clear all clc data1 = xlsread('3.6 基于统计异常值检测案例数据.xlsx'); data = reshape(data1, [], 1); figure; boxplot(data); title('箱线图'); xlabel('数据'); ylabel('值'); % 手动计算异常值界限 Q1 = prctile(data, 25); % 下四分位数 Q3 = prctile(data, 75); % 上四分位数 IQR = Q3 - Q1; % 四分位距 lower_whisker = Q1 - 1.5 * IQR; % 下限 upper_whisker = Q3 + 1.5 * IQR; % 上限 % 识别异常值 outliers = data(data < lower_whisker | data > upper_whisker); disp('异常值:'); disp(outliers); ``` ### 总结 通过对上述基于统计的异常值检测方法的学习,我们可以看到这些方法不仅简单易懂,而且在实践中非常实用。无论是3σ准则还是Z分数法,都基于正态分布的假设;而Boxplot法则更加灵活,不严格依赖于正态分布假设。这些方法能够帮助我们在数据预处理阶段有效地识别并处理异常值,为后续的数据分析和建模打下坚实的基础。
2025-11-19 09:57:07 31KB matlab
1
基于区域的图像分割基本上已由 Chan-Vese (CV) 模型解决。 然而,当图像受到超过实际图像对比度的伪影(异常值)和光照偏差的影响时,该模型会失败。 在这里,我们实现了一个用于分割此类图像的模型。 在单个能量函数中,我们引入了 1) 防止强度异常值扭曲分割的动态伪像类,以及 2) 以 Retinex 方式,我们将图像分解为分段常数结构部分和平滑偏置部分。 然后,CV 分割项仅作用于结构,并且仅作用于未被识别为工件的区域。 分割使用相场参数化,并使用阈值动态有效地最小化。 有关理论和算法的完整描述,请参阅 D. Zosso、J. An、J. Stevick、N. Takaki、M. Weiss、LS Slaughter、HH Cao 的论文“Image Segmentation with Dynamic Artifacts Detection and Bias Correction”
2023-01-16 18:41:00 48KB matlab
1
该程序能自动算出最优权重和集合之间相互关联的模型。
2022-11-07 20:22:41 10.32MB RPCA检测 rpca 最优权 j进阶算法
1
当目标受尺度变化、严重遮挡、相似目标干扰、光照变化和出视野等因素影响时,核相关滤波器(KCF)跟踪算法会出现目标丢失现象。目标一旦丢失,KCF跟踪算法本身是不能察觉的,并且跟踪器会将背景信息作为目标继续进行跟踪,导致目标彻底丢失。针对这一问题,在KCF跟踪算法的基础上,提出了一种基于异常值检测方法的目标丢失预警机制。该方法利用一组固定维数动态峰值数据的均值和标准差对每帧的响应峰值进行检测,如若发现异常峰值,则判定目标丢失或即将丢失,解决了KCF跟踪器在跟踪过程中目标丢失不能察觉的问题。实验结果表明,所提出的方法在KCF算法跟踪过程中目标丢失时,能够正确预警,成功率达到100%,具有很高的可靠性,为目标丢失后何时载入目标重检测定位提供可靠的依据。
2022-11-05 11:31:28 1.15MB 论文研究
1
用于 Julia 的基于邻居的异常值检测算法
2022-06-10 09:06:56 16KB julia 算法
代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常代码 基于RPCA异常值检测代码值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码代码 基于RPCA异常值检测代码
针对传统核相关滤波器(KCF)跟踪算法受光照变化、严重遮挡和出视野等因素影响,出现目标丢失现象时,跟踪器会将背景信息作为目标继续进行跟踪而不能重新定位目标的问题,在KCF的基础上,引入异常值检测方法作为目标丢失预警机制,同时,提出了目标丢失重检测定位机制。方法对每帧的峰值进行检测,发现异常峰值,则判定目标丢失或即将丢失,预警机制发出警告,停止目标模板更新,启动目标丢失重检测定位机制,在全帧搜索定位目标。实验结果表明,改进的算法精确度为0.751,成功率为0.579,较之传统KCF跟踪算法分别提高了5.77%和12.43%。解决KCF跟踪器在目标丢失后不能重新找回目标继续跟踪的问题,提升了跟踪算法的性能,实现了长期跟踪。
2022-03-28 15:24:28 1.07MB 论文研究
1
今天小编就为大家分享一篇Python实现非正太分布的异常值检测方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-03-23 21:43:48 72KB Python 正太分布 异常值 检测
1
总结了异常值检测的相关课程视频、书籍、论文、数据集以及工具库
2022-02-24 19:45:01 40KB Python开发-机器学习
1
这是一个基于 Jae-Gil Lee 在公开提供的代码的轨迹异常值检测库。 这段代码执行的算法来自一篇题为“Trajectory Outlier Detection: A Partition-and-Detect framework”的论文,可以在找到。 main.cpp 中提供了使用该库的示例代码,可以使用命令“make”进行编译。 需要 C++11 兼容编译器和 gnuplot。 有关更多详细信息,请参阅。
2022-02-24 02:39:03 84KB C++
1