Con北京站聚焦技术落地与前沿趋势,核心方向包括: ​​AI工程化​​:端侧推理、RAG增强、多模态生成成为主流; ​​云原生深水区​​:混合云治理、湖仓一体架构、可观测性技术持续迭代; ​​安全与效能​​:大模型安全防御、研发流程标准化、平台工程价值凸显; ​​行业融合​​:物流、金融、社交等领域的技术跨界创新案例丰富。 大会为开发者提供了从理论到实践的全景视角,推动技术向生产力转化。 小红书FinOps实践:云成本优化与资源效率提升 在当今数字化转型和云计算迅猛发展的背景下,企业的云成本管理和资源效率成为核心议题。梁啟成在其著作中探讨了通过FinOps实践优化云成本、提升资源效率的有效途径。 ### 云资源成本与优化 云资源的成本管理是企业成本优化中的关键。企业需要对云资源的费用、折扣空间、资源开通权限、供应商情况及资源用量归属有清晰的认知。通过对实际资源成本与预算计划的比较,分析成本分摊的合理性,以及资源配置、存储周期和介质是否符合预期,企业可以定期组织成本review,从而对业务目标和资源动因有一个明确的了解。 ### 成本洞察与优化策略 梁啟成提出了两个核心概念,即成本洞察(Inform)和成本优化(Optimize)。成本洞察意在对企业消耗资源的方式和成本进行深入分析,而成本优化则是要通过策略和操作改变现状,实现成本的降低和资源使用效率的提升。目标是通过对外统一混合云计费账单模型,对内提供量价对应的资源账单,让业务部门能够清晰地看到成本,实现精细化运营。 ### 实施成效与案例分析 在梁啟成的实践中,中台自持资源成本占比实现了从15%以上降低到5%的显著效果。通过权责分明,采购部门负责商务节约(saving),中台技术提升效率,业务技术优化用量,从而实现了内外账金额偏差的控制。在资源管理方面,通过中台产品上架管理,资源用量上报、计费项定价与计费出账,提高了资源使用的透明度。 ### 技术细节与性能优化 内存访问延迟是影响CPU利用率的一个重要因素,不同访问方式(本地访问、跨NUMA访问、跨Socket访问)的性能存在显著差异。内存规格越大,可能会导致更激烈的邻居间内存共享竞争。此外,内存使用分布不均衡问题也是优化过程中的一个挑战。在CPU利用方面,通过优化内核配置和管理策略,可以显著提升性能,如通过优化消除IPI中断带来的性能退化,或通过调整系统内存管理策略减少抖动,从而提升CPU利用率和整体QPS。 ### 大型虚拟机与Pod策略 在虚拟化环境的资源优化方面,"大VM小Pod策略"被提出来作为解决方案。该策略包括申请大规格VM,以单socket单VM来避免底层虚拟化的问题;混合多业务,以分散热点分布,减少资源共振;通过K8s调度和内核burst能力提升Pod的弹性和容忍度。这些措施可以显著缓解CPU分层问题,提升峰值利用率,优化资源使用效率。 ### GPU资源的使用优化 在GPU资源使用方面,梁啟成强调了GPU利用率和饱和度的监控,以及计算类型分布和卡型用途的记录。通过使用列存格式(如Parquet)和数据湖技术,可以存储和管理多云统一AI训练数据集,减少冗余存储,并优化跨云数据传输和异构介质分层管理数据。 ### 结论 梁啟成的FinOps实践为企业提供了一个全面的云资源成本优化和资源效率提升的蓝图。通过对成本的深入洞察、优化策略的实施以及技术层面的性能调优,企业可以实现云资源的精细化运营,从而在保障业务目标达成的同时,实现成本的有效控制和资源的高效利用。这些实践不仅有助于企业提升技术能力,而且能够促进业务流程的优化,达到降本增效的双重目的。
2026-01-06 17:10:40 3.08MB 人工智能 AI
1
内容概要:本文详细介绍了如何利用Matlab和遗传算法优化冷链物流配送路径规划,旨在降低成本并提高效率。文中具体阐述了优化目标、数据初始化、遗传算法主体流程(包括种群初始化、选择、交叉和变异)、成本计算函数的设计,以及结果展示等方面的内容。通过这种方式,不仅实现了固定成本、制冷成本、惩罚成本和运输成本的最小化,还展示了算法的有效性和灵活性。 适合人群:从事冷链物流管理、路径规划研究的专业人士,以及对遗传算法应用感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要精确控制配送时间和温度的冷链物流行业,特别是那些希望通过优化路径来减少运营成本的企业。目标是在确保货物质量的前提下,最大化配送效率并降低成本。 其他说明:文中提供了详细的代码示例和解释,便于读者理解和实践。此外,还强调了时间窗设置的重要性及其对最终成本的影响,提醒使用者根据实际情况调整参数以获得最佳效果。
2025-05-09 20:04:38 503KB
1
基于遗传算法的带充电桩电动汽车路径规划系统:支持软时间窗、多目标点及成本优化,基于遗传算法的电动汽车带充电桩路径规划VRPTW问题研究:软时间窗、时间窗惩罚、多目标点与充电功能的集成及Matlab程序实现,遗传算法求解带充电桩的电动汽车路径规划VRPTW问题 具有的功能 软时间窗,时间窗惩罚,多目标点,充电,遗传算法 生成运输成本 车辆 路线 带时间窗,注释多,matlab程序 代码有详细注释,可快速上手。 ,关键信息提取的关键词如下: 遗传算法; VRPTW问题; 充电桩; 电动汽车路径规划; 软时间窗; 时间窗惩罚; 多目标点; 充电; 运输成本; 车辆路线; 代码注释; Matlab程序。 以上关键词用分号分隔为: 遗传算法; VRPTW问题; 充电桩; 电动汽车; 路径规划; 软时间窗; 时间窗惩罚; 多目标点; 运输成本; 车辆路线; 代码详细注释; Matlab程序。,遗传算法在电动汽车带充电桩的VRPTW路径规划中的应用
2025-04-24 14:00:35 711KB 哈希算法
1
基于成本优化的含风电系统抽水蓄能容量配置与经济调度模型研究——结合粒子群算法的混合发电系统日前调度分析,含风电系统抽水蓄能容量优化分析,有参考文献。 本人亲子编写,修改,以成本最低得到含抽水蓄能机组的混合发电系统的调峰经济调度模型。 然后,用粒子群算法与含有抽水蓄能的混合发电系统的调峰经济调度模型相结合,得到系统日前调度,最终获得储能容量优化配置和经济调度 ,关键词: 含风电系统; 抽水蓄能; 容量优化分析; 参考文献; 调峰经济调度模型; 粒子群算法; 日前调度; 储能容量优化配置 (关键词以分号分隔: 含风电系统; 抽水蓄能; 容量优化分析; 参考文献; 调峰经济模型; 粒子群算法; 日前调度; 优化配置),"混合发电系统调峰经济调度模型与储能容量优化研究"
2025-03-26 20:18:32 3.33MB
1
以IEEE-30节点系统(6个发电机)为例,在满足各项约束的条件下,以经济性最优最小化成本为目标函数,求解系统内机组的组合结果,包括机组启停计划、各时段最优出力,以及内含的各时段的直流潮流
2023-11-22 11:12:26 313KB matlab 成本优化 IEEE30 毕业设计
1
大佬们分享的AWS成本优化诀窍! 大佬们分享的AWS成本优化绝技!
2023-01-03 15:40:32 1.47MB AWS 成本优化 诀窍
1
描述 TIDA-00299 参考设计为应用处理器实施了成本优化型 EtherCAT:registered: 从器件(双端口)和 SPI 接口。该硬件设计能够利用 AMIC110 工业通信处理器来支持多协议工业以太网和现场总线。该设计具有 5V 输入电压。单个 PMIC 可板载生成所需的所有电源轨。EtherCAT 从堆栈可利用串行外设接口 (SPI) 在 AMIC110 上或应用处理器上运行。利用硬件开关,可对 AMIC110 进行配置,以从 SPI 闪存启动 EtherCAT 从固件,或通过 SPI 从应用处理器进行启动。此设计采用 BoosterPack:trade_mark: 插件模块外形,具有与 TI LaunchPad:trade_mark: 开发套件兼容的连接器,可利用 C2000:trade_mark: MCU 进行轻松评估。JTAG 接口可加快自定义固件开发的速度。 特性 通过 EtherCAT 从器件一致性测试 (CTT) 利用 AMIC110 通信处理器,支持可进行软件编程的多协议工业以太网和现场总线 SPI 接口具有灵活性,可利用板载 AMIC110 处理器或在 C2000 MCU 等应用处理器上运行 EtherCAT 从堆栈 强大的低延迟 10 或 100 兆位以太网 PHY DP83822 利用单个 PMIC 从预调节 5V 电源为整个电路板供电,实现成本优化型的简易电源管理 在工业温度范围内运行,在典型用例中,总电路板功耗低于 1.25W;在高达 85oC 的环境下运行时无需散热器
2022-06-09 16:34:38 17.33MB 开源 电路方案
1
基于作业成本法的A物流企业成本优化研究.pdf
2022-01-18 13:05:39 1.24MB 资料
建立并求解一个基于成本最小的供应链网络模型。与以往研究不同,在该模型中生产一种产品需要至少两种原料,每种原料都可以由备选供应商提供。根据模型的特点,用0、1代表对原材料供应商、工厂和分销中心的选择情况,以MATLAB 7.6为平台,运用Sheffield大学的遗传算法工具箱,将遗传算法与线性规划算法相结合,实现了模型的求解。算例结果表明,给出的染色体编码方案正确,混合遗传算法有效,能解决多周期、多原料的供应链网络成本优化问题。还探讨了需求和距离变化,以及需求随机时对最优成本和最优个体的影响。研究表明,需求变化的影响大于距离变化的影响,需求随机对最优成本和最优个体的影响不大。
1
基础化工行业研究:化工行业转型“高端制造”,把握成本优化及技术创新的发展机遇.pdf
2021-08-22 09:07:17 4.39MB 行业数据 数据报告 化工行业 研究报告