"深度学习YOLOv8+Pyqt5联合打造实时吸烟行为检测系统:完整源码+数据集+详细说明,助力禁烟政策执行",基于深度学习YOLOv8与Pyqt5集成,全方位公共场所抽烟检测与识别系统,附带全套源码及详细指南——轻松构建、跑通与定制升级,基于深度学习YOLOv8+Pyqt5抽烟吸烟检测识别 将获得完整源码+数据集+源码说明+配置跑通说明 可以额外付费远程操作跑通程序、定制其他课题 支持图片、视频、摄像头检测 在现代社会,公共场所的禁烟政策越来越严格,以减少二手烟对非吸烟者的影响。 然而,监管和执行这些政策仍然面临挑战。 本文提出了一种基于YOLOv8(You Only Look Once version 8)的抽烟检测系统,该系统结合了深度学习技术和PyQt5图形用户界面框架,旨在实时监测并识别公共场所中的吸烟行为。 该系统的设计考虑了实时性、准确性和用户友好性,为提高公共场所的空气质量和遵守禁烟规定提供了。 ,基于深度学习; YOLOv8; Pyqt5; 抽烟检测识别; 完整源码; 数据集; 配置跑通说明; 远程操作; 定制课题; 图片/视频/摄像头检测; 禁烟政策; 实时监测;
2025-05-28 15:49:00 1.91MB csrf
1
[数据集][目标检测]抽烟检测数据集VOC+YOLO格式22559张2类别.docx
2025-05-16 10:57:40 3.96MB 数据集
1
抽烟检测数据集 yolo 总共3224张图片,已经标注
2025-05-16 10:41:47 345.38MB 抽烟检测
1
抽烟及打电话行为数据集,适用于深度学习用户抽烟或打电话行为检测。共有5373张图像:打电话数据1227张、吸烟数据2168张、正常数据1978张。
2024-09-13 13:48:33 113.03MB 数据集
1
吸烟(抽烟)检测和识别1:吸烟(抽烟)数据集说明(含下载链接):https://blog.csdn.net/guyuealian/article/details/130337263 吸烟(抽烟)检测和识别2:Pytorch实现吸烟(抽烟)检测和识别(含吸烟(抽烟)数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/131521338
2024-03-21 17:31:24 181B Pytorch 吸烟识别 吸烟检测
1
其中包含5000多张图片,以及相应的text文本标注,包括类别,和烟的坐标。内容为抽烟图片,格式对标yolov5.6.2,修正一下路径和类别即可直接执行训练。
2023-03-23 14:28:30 475.36MB yolo
1
1、基于深度学习+opencv实现抽烟打电话识别检测源码+模型文件+评估指标曲线+使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、4000多张图片数据训练,7000多个目标,迭代200次,模型拟合较好。 4、识别2个类别,分别是“打电话”和“抽烟” 【备注】有相关使用问题,可以私信留言跟博主沟通。
数据为网络爬取,香烟部分,可用于抽烟行为识别,任务属性等任务。数据总量3W+(持续增加),包括部分私有数据,可训练baseline用,更多数据邮件联系yuanc000000@gmail.com
2022-11-25 21:28:07 128.17MB 深度学习 抽烟打电话 pytorch 行为识别
1
数据为网络爬取,手机部分,可用于打电话行为识别,任务属性等任务。数据总量3W+(持续增加),包括部分私有数据,可训练baseline用,更多数据邮件yuanc000000@gmail.com
2022-11-25 12:26:59 64.37MB 人工智能 深度学习 抽烟打电话 pytorch
1
抽烟检测一共2500多张图片含负样本,训练测试比例为8:2。进行了数据划分,数据增强,数据清洗,负样本添加,可以直接下载使用。准确率可达0.98+
2022-09-28 12:05:38 268.82MB 抽烟检测 深度学习 人工智能
1