教学材料,pdf及ppt,电子课件,习题及解答,教学进度表,教学大纲
2025-06-17 20:47:51 397.68MB 人工智能 机器学习 数据挖掘 电子课件
1
在第2版weka中文版的 基础上制作了第3版,暂定版本v0.3。将 guichooser 汉化完成。考虑到大家还是习惯使用 guichooser 作为默认启动界面,将 RunWeka.ini 中的设置恢复默认。但是为了支持中文,其中的编码选项从 cp1252 改为 utf-8 ,各位同学制作数据文件的时候可以保存为 utf-8 编码。 也可以自行去修改根目录下的 RunWeka.ini 。 如果对翻译不满意,请告知于我,我们共同努力。 本次只发布了64位的版本,包含64位 jre,在根目录下的 jre 目录,需要的可以自行安装。解压缩到任意目录后,运行 RunWeka.bat 就可以了。当然也有快捷方式可以用,但图标因为路径问题需要你自己重新设定一下。理论上将根目录下的 weka.jar 提取出来覆盖你之前安装好的 weka 目录中的 weka.jar,即可实现 weka 汉化,32位和64位都可以用,但前提是你安装的 weka 版本要是 3.7.12。最好事先备份好你的 weka.jar文件,出现问题可以恢复。
2025-06-16 22:30:01 54.08MB weka Weka中文版 Weka汉化版 数据挖掘
1
内容概要:本文主要探讨了利用机器学习技术对学生辍学和学业成功进行预测的方法。通过分析一个详细的教育数据集,进行了数据清理与预处理,并利用了相关性分析来筛选数据。接着分别采用了随机森林、K近邻、逻辑回归以及决策树四种经典机器学习模型来进行实验,比较它们在该任务中的表现。最终得出逻辑回归模型与随机森林模型在这项工作中具有更好的性能。 适用人群:本报告适合关注教育领域的数据科学家、研究人员和教育工作者;对希望通过改进教学质量预防学生辍学者特别有价值。 使用场景及目标:该预测模型可以在学校管理过程中发挥作用,帮助识别潜在辍学风险高的学生,从而允许早期干预,优化教学资源配置并提升整体学业成功率。 其他说明:文中还讨论了一些重要的机器学习概念如准确性、错误率等,并引用了一系列与主题紧密关联的专业书籍和技术文献,为未来的研究提供了坚实的基础。
2025-06-09 13:10:39 2.25MB 机器学习 数据挖掘
1
在当今的信息时代,数据采集与预处理已成为大数据分析和数据挖掘领域中不可或缺的重要环节。本报告将深入探讨数据采集与预处理的过程、方法论以及相关的代码实现,以期为读者提供一个全面的了解和应用指南。 数据采集是数据处理的第一步,它涉及到从各种数据源中获取原始数据。这些数据源包括数据库、文件、网络、API、传感器等多种形式。采集的数据类型可能是结构化的,如关系型数据库中的表格数据,也可能是非结构化的,如文本、图像和视频。在数据采集的过程中,需要考虑数据的完整性、准确性和时效性。同时,对于大规模数据采集来说,还需要关注数据采集过程中的效率和成本问题。 数据预处理是在数据正式用于分析或挖掘之前对其进行清洗、转换和规约的过程。数据预处理的目的是提高数据质量,为后续的数据分析提供更加准确和可靠的输入。数据预处理通常包括以下几个步骤: 1. 数据清洗:这是预处理过程中最重要的步骤之一,涉及到处理缺失值、噪声数据和异常值。在这一过程中,可能需要利用各种算法和模型来识别和纠正数据中的错误。对于缺失值,常见的处理方法包括删除相关记录、填充默认值、使用预测模型等。 2. 数据集成:将多个数据源中的数据合并到一起。在数据集成过程中,需要解决数据冲突、数据冗余和数据不一致性的问题。 3. 数据变换:将数据转换成适合分析的形式。这可能包括数据规范化、数据离散化、数据概化等技术。数据规范化可以消除不同量纲带来的影响,数据离散化和概化则可以帮助提高数据处理的效率。 4. 数据规约:在保证数据代表性的同时减少数据量。数据规约可以采用属性规约、维度规约等技术,目的是在不影响分析结果的前提下,降低计算复杂度和存储需求。 在实际的数据预处理工作中,通常需要结合具体的数据分析目标和数据特点,采取适当的预处理策略。为了更好地展示数据采集与预处理的整个流程,本报告将提供一份完整的期末报告文档,并附上相关的代码实现。报告将详细描述项目的背景、目标、数据采集的方法、预处理的步骤和策略,以及代码的具体实现和执行结果。通过实例分析,报告将展示如何有效地采集和预处理数据,并为数据分析师提供实际操作的参考。 此外,报告还将探讨在数据采集与预处理中可能遇到的一些挑战和问题,例如隐私保护、数据安全、实时数据处理等,并提供相应的解决方案或建议。 本报告的代码实现部分将使用Python作为主要编程语言,利用其强大的数据处理库Pandas进行数据清洗,使用NumPy进行数学运算,采用Matplotlib和Seaborn进行数据可视化展示。对于复杂的预处理任务,可能会涉及到机器学习算法,此时会使用scikit-learn库进行相应的模型训练和参数调整。通过这些工具和代码的展示,读者不仅能够理解数据采集与预处理的理论知识,还能掌握实际操作技能。 报告的还将对数据采集与预处理的未来发展趋势进行预测和分析。随着大数据技术的不断进步和应用领域的不断拓展,数据采集与预处理的方法和技术也在不断地更新和迭代。未来的数据采集与预处理将更加自动化、智能化,将更多地依赖于机器学习和人工智能技术,以处理更复杂、更海量的数据。 数据采集与预处理是数据分析和挖掘的基石。只有通过高质量的数据采集和预处理,才能确保后续分析结果的准确性和可靠性。本报告旨在为读者提供一个系统化的学习路径,帮助他们建立起扎实的数据采集与预处理知识体系,为成为数据分析师或数据科学家打下坚实的基础。
2025-06-07 17:45:46 19.09MB 数据分析 数据挖掘
1
内容概要:文章详细探讨了BP神经网络的基本原理和具体实现方法,并展示了其在江苏省军工产业持续创新发展中的实际应用。文中不仅深入介绍了BP神经网络的工作机制,如输入层、隐藏层及输出层的功能以及反向传播算法的细节推导过程,而且还解释了利用BP神经网络对军工产业持续创新能力评估的具体步骤。通过构建合理的样本集进行训练,最后通过模拟实验证明BP神经网络在预测该领域的指标方面的高效性和精确度。 适合人群:具有一定编程技能并对人工智能感兴趣的高等院校研究人员、工程技术人员或从事军事工业相关的从业者。 使用场景及目标:本文旨在为从事或关注军事工业领域的人士提供一个新的分析工具,以帮助他们更好地理解和预测产业创新的影响因素,并提出有效的改进建议。具体应用场景包括但不限于企业决策支持、政策规划、投资战略等。 其他说明:文章附带了一个详细的案例——关于江苏省军工产业发展情况的研究成果,通过该研究证明BP神经网络的有效性;另外,还提供了几个公式来阐述网络训练中权重更新的原则,有助于读者进一步理解模型背后的技术逻辑。
1
《AI基于机器学习的股票数据挖掘分析系统的设计与实现》这篇论文主要探讨了如何利用人工智能技术,特别是机器学习算法,来对股票市场进行深度的数据挖掘和分析。这是一份涵盖论文说明书、任务书和开题报告的综合研究,旨在为金融商贸领域的决策者提供科学的工具和方法。 在论文中,作者首先介绍了人工智能在金融领域的应用背景,强调了在海量股票数据中寻找规律和预测趋势的重要性。接着,论文深入讨论了机器学习的基础理论,包括监督学习、无监督学习和强化学习等不同类型的算法,如线性回归、决策树、随机森林、支持向量机以及神经网络等,并分析了它们在股票数据分析中的适用场景。 数据挖掘是该系统的核心部分,通过对历史股票交易数据的预处理、特征工程和模式识别,提取出有价值的特征。这些特征可能包括股票的价格、交易量、公司基本面信息等,甚至可能涉及宏观经济指标。作者可能探讨了如何构建有效的特征组合,以提高模型的预测精度。 在系统设计与实现环节,作者可能会详细描述数据获取和清洗的过程,以及如何构建一个能够实时更新和学习的模型。这可能涉及到大数据处理技术,如Hadoop或Spark,以及云计算平台的运用,以实现高效的数据处理和模型训练。同时,可能还会介绍系统的架构设计,包括前端用户界面和后端数据分析模块的交互逻辑。 在论文的实证分析部分,作者会利用特定的股票数据集进行模型验证,对比不同机器学习算法的性能,并可能提出优化策略。此外,通过案例研究,展示系统如何帮助投资者做出更明智的决策,例如,通过预测股票价格波动,识别投资机会,或者预警潜在风险。 毕业设计的整个过程不仅锻炼了作者的科研能力和编程技能,也展示了将理论知识应用于实际问题的能力。尽管论文可能无法提供直接的投资建议,但其方法论和思路对于理解人工智能在金融领域的应用具有重要的参考价值。 这篇论文和相关文档为读者提供了深入理解和构建AI驱动的股票数据挖掘分析系统的基础,有助于金融商贸领域专业人士了解如何利用机器学习提升决策效率,同时也为后续研究提供了宝贵的思路和参考。
1
图 27.12 估计生存概率 单击执行后,报表显示估计和置信区间,如 Meeker 和 Escobar 的实例 19.8 所示。 图 27.13 生存概率 实例:区间删失加速失效时间模型 继续讲解 Meeker 和 Escobar [第 508 页和附录 C.15] 的另一个实例,IC设备02.jmp 给出的数据 中失败发生在检验区间之间。 Reliability 样本数据文件夹中的数据如图 27.14 所示。 图 27.14 IC设备02 数据 此模型使用两个 y 变量,包含失效时间的上限和下限。右删失时间显示为缺失上限。要执行 分析,请选择分析 > 生存和可靠性 > 参数生存模型拟合,其中 HoursL 和 HoursU 作为事件时间, Count 作为频数,而 DegreesC 作为模型效应。得到的回归图为时间与温度图。
2025-05-20 10:33:51 11.69MB 数据挖掘 数据分析
1
命名实体识别(NER)是自然语言处理(NLP)领域中的关键任务,它涉及识别文本中具有特定意义的实体,如人名、地名、组织名等。标题“中文NER集合”表明这是一个专注于中文环境下的命名实体识别资源集合。描述中提到的“基于马尔科夫逻辑的命名实体识别技术”,暗示了该压缩包可能包含一些利用马尔科夫逻辑网络(Markov Logic Networks, MLNs)的方法来解决中文NER问题的研究。 马尔科夫逻辑网络是一种概率逻辑框架,它结合了马尔科夫随机场和第一阶逻辑的优点,可以用于建立复杂的语义关系模型。在NER中,MLNs可以用来捕捉实体之间的局部和全局上下文信息,以提高识别准确性。例如,一个实体的类型可能与其前后词汇有关,MLNs可以通过定义这些依赖关系的规则来帮助识别。 压缩包中的文件名称提供了更多线索: 1. "NER综述.pdf":这可能是一个全面的NER技术综述,涵盖了各种方法和技术,包括传统的统计模型和深度学习方法。 2. "SSSSSSSSSSSSSSSSSSSSSSSOpen Information Extraction from the Web.pdf":可能探讨的是从互联网上提取开放信息,可能包括NER作为信息提取的一部分。 3. "基于层叠隐马尔可夫模型的中文命名实体识别.pdf":这可能是介绍如何使用层叠隐马尔可夫模型(Cascaded HMMs)进行中文NER的论文,这是一种经典的序列标注模型。 4. "Open Domain Event Extraction from Twitter.pdf":可能关注的是从社交媒体,特别是Twitter中提取开放领域的事件,这通常需要有效的NER来识别事件相关的实体。 5. "一种开放式中文命名实体识别的新方法.pdf":这可能描述了一种新的、创新的中文NER算法,可能采用了不同于传统方法的策略。 6. "[46]ner.pdf":文件名较简单,但可能是一个特定的NER研究或技术的详细说明,编号可能表示参考文献的序号。 这个集合对于学习和研究中文NER非常有价值,它可能包含了理论概述、经典模型的解释、最新方法的介绍以及实际应用案例。通过深入阅读这些资料,我们可以了解命名实体识别的发展历程,比较不同方法的优缺点,以及如何将这些技术应用于实际的数据挖掘和事件抽取任务。此外,对于想要在中文环境下提升信息提取和理解能力的研究者和开发者来说,这些资源无疑是一个宝贵的资料库。
2025-05-19 20:41:54 1.65MB 命名实体识别 数据挖掘 事件抽取
1
第六届“泰迪杯”数据挖掘挑战赛—— B 题:电视产品的营销推荐 资源内包含题目要求及原始数据、本人自己做的解题代码、使用的数据、实验论文 适合备战“泰迪杯”类型的数据挖掘类比赛的本科生进行学习 能学到数据处理的基本方法以及物联网数据分析的相关知识 在第六届“泰迪杯”数据挖掘挑战赛的背景下,B题聚焦于电视产品的营销推荐,为参赛者提供了一个将理论与实践相结合的绝佳机会。本次挑战赛通过提供详细的问题描述、原始数据集以及解题代码,旨在帮助参赛者在实践中学习和掌握数据处理的基本方法。题目不仅涉及传统的数据挖掘技术,还融入了物联网数据分析的新元素,这对于本科生而言是一次宝贵的学习体验。 参赛者在解决电视产品营销推荐问题的过程中,需要深入了解消费者行为模式,并能够运用各种数据挖掘工具和技术来提取有价值的信息。这包括但不限于数据预处理、特征工程、模型构建和结果评估等步骤。通过这种类型的比赛,参赛者可以对数据挖掘的整个流程有一个全面的认识,并能够在实际应用中提出创新的解决方案。 此外,解决此类问题还需要对电视产品市场的营销策略有所了解,例如价格策略、产品定位、广告投放以及消费者偏好等。参赛者需要将数据挖掘与市场分析相结合,从而为电视产品提供个性化推荐。在实际操作中,这可能涉及到构建推荐系统,利用机器学习算法对大量历史数据进行分析,以发现潜在的购买模式和关联规则。 参赛者不仅需要掌握数据挖掘技术,还要有能力撰写实验论文,清晰地表达自己的研究方法、过程和结果。这对于培养参赛者的科研素养和论文写作能力是非常有益的。实验论文应详细记录从数据收集、预处理到模型选择、评估的全过程,并对模型的性能进行分析讨论。 对于备战“泰迪杯”类型的数据挖掘比赛的本科生来说,本次挑战赛是一个难得的实战机会。它不仅能够帮助学生巩固课堂上学到的理论知识,还能让学生在实际操作中遇到问题和挑战,提高解决实际问题的能力。同时,通过比赛,学生可以了解当前数据挖掘领域的发展趋势和前沿技术,为将来的职业生涯打下坚实的基础。 参加本次挑战赛的参赛者,通过研究和分析电视产品的营销数据,将有机会学习到如何运用数据挖掘技术来解决市场营销中的实际问题。他们将学会如何处理和分析大量的数据集,以及如何使用这些数据来预测市场趋势和消费者行为。这不仅是一次学术挑战,更是一次实践应用的演练。通过这样的经验积累,参赛者可以加深对数据挖掘技术及其在物联网数据分析领域应用的理解,进而在未来的学习和工作中发挥这一技能。 第六届“泰迪杯”数据挖掘挑战赛的B题为参赛者提供了一个全面的实践平台,让他们在解决实际问题的同时,能够学习到数据处理和物联网数据分析的相关知识,并提升自身的数据分析能力。这种结合实战的学习方式,对于培养学生的综合应用能力具有重要意义。
2025-05-05 21:44:52 28.65MB 数据挖掘 物联网数据分析
1
数据挖掘实验一-3数据资源3
2025-04-29 15:13:04 49KB 数据挖掘
1