标题中的“DIY简单灵敏金属探测器-项目开发”指的是一个自制的金属探测器项目,旨在帮助用户构建一个简易但灵敏的金属检测装置。这种探测器通常基于电子技术和信号处理原理,可以用来寻找地下的金属物品,如硬币、珠宝或埋藏的金属遗物。 描述中提到的“脉冲感应金属探测器”是一种特定类型的金属探测技术。它使用短暂的电磁脉冲来激发地表下方的金属目标,然后检测由金属反射回来的电磁场变化。这种技术的优势在于它能提供更深的探测深度和更高的识别准确性,尤其是对于较大的金属物体,如描述中提到的40厘米以上距离的物体。而15厘米的范围则表明该设计也能够检测较小的金属物体,如硬币,这在许多应用中是很有用的。 “sensitive”标签强调了这个探测器对金属的敏感度,意味着即使是很小的金属目标也能被准确探测到。这通常是通过优化电路设计和参数调整实现的,例如调整脉冲频率和接收器的灵敏度。 压缩包内的文件名暗示了项目的技术细节: 1. `arduino_code.c` - 这可能包含了使用Arduino微控制器的源代码。Arduino是一种流行的开源硬件平台,常用于DIY电子项目,它简化了编程和电路设计。在这个项目中,Arduino可能用于生成脉冲信号、接收反馈信号以及处理这些信号以确定金属的存在。 2. `untitled_sketch_bb_K8pwIAJQ3B.jpg` - 这可能是一个电路原理图,通常用于显示项目的电气连接布局。用户可以通过这个图了解如何连接各个组件,包括微控制器、感应线圈、放大器和其他电子元件。 3. `diy-simple-sensitive-metal-detector-7f34ad.pdf` - 这很可能是一个详细的项目指南,包含步骤说明、所需材料清单、可能遇到的问题及解决方案,以及可能的改进方法。 这个项目涉及的知识点包括: 1. 脉冲感应技术:理解脉冲产生的机制和金属目标对这些脉冲的响应。 2. Arduino编程:编写控制脉冲生成和信号处理的代码。 3. 电路设计:创建和理解电路原理图,包括信号放大和滤波部分。 4. 传感器技术:学习如何构建感应线圈以检测电磁场的变化。 5. 电子信号处理:分析接收到的信号并从中提取金属存在的信息。 6. 实践工程技能:实际组装和调试设备,确保其功能正常。 通过完成这个项目,不仅可以学习到基础的电子和编程知识,还能提升解决问题和动手实践的能力。
2025-12-10 09:34:46 603KB metal detector pulse induction
1
介绍了清华大学微型脉冲强子源(CPHS)中子小角散射谱仪中3He管探测器的前端电子学设计。该谱仪设计采用一维3He管探测器阵列,使用电荷分配法确定中子入射位置。在基于电荷分配法的双端读出电路中,设计者需要考虑更多的因素如高压隔直电容、运放的输入阻抗、成形电路的结构等,这些因素都会给位置分辨带来影响。该文通过分析这些因素的影响,并结合SPICE软件仿真,对电路参数进行优化,给出一个简单可行的电路设计方案,并通过初步实验验证了可行性。
2025-11-25 08:28:01 1.18MB 自然科学 论文
1
1.1.2.核辐射探测器的主要类别和输出信号 辐射探测器的定义:利用辐射在气体、液体或固体中引起的电离、激发效应或其它物理、化学变化进行辐射探测的器件称为辐射探测器。 给出电信号的常用核探测器按探测工作介质类型及作用机制主要分为: 气体探测器; 闪烁探测器; 半导体探测器探测器的工作机制; 探测器的输出回路与输出信号;(1.4节) 探测器的主要性能指标(1.3节); 简要介绍:
2025-11-22 17:58:20 2.98MB 核电子学 数据采集
1
我们提出了暗三叉戟,这是在短基线中微子实验中探索暗区的新渠道。 暗三叉戟是干净的,截然不同的事件,像中微子三叉戟一样,耦合非常弱的粒子的散射会导致产生轻子-反轻子对。 暗三叉戟产生在模型中发生,在该模型中,在束流转储环境中与中微子一起产生了长寿命的暗区粒子,并与下游的中微子探测器相互作用,产生了壳上的玻色子,该玻色子会衰变成一对带电的轻子。 我们关注一个简​​单的模型,其中暗物质粒子仅通过暗光子与标准模型相互作用,并集中在参数空间区域,其中暗光子质量小于暗物质的质量的两倍,因此仅衰减为 标准模型粒子。 我们将计算事件发生率,并讨论与费米实验室的Booster光束(MicroBooNE,SBND和ICARUS)对准的当前和即将到来的液氩探测器在暗物质中从暗物质中寻找暗三叉戟的搜索策略,假设暗区粒子是在更高的轴外产生的。 能量NuMI光束。 我们发现MicroBooNE已经记录了足够的数据,可以与该暗扇区模型上的现有边界竞争,并且将来的数据和实验将探究参数空间的新区域。
2025-08-11 21:09:50 1.35MB Open Access
1
比我之前的坠落探测器有所改进。它可以通过感知跌倒或只需按一下按钮发送电子邮件。 硬件组件: DFRobot ESP32 ESP-WROOM模块× 1 Silicon Labs CP2102 USB转UART桥接器× 1 MCP73831锂离子充电器IC× 1 LM317BD2T可调节稳压器× 1 0805 4.7uF电容器× 2 0805 100nF电容器× 1 0805 1uF电容器× 1 WS2812b LED× 1 1206 LED× 4 Micro USB连接器× 1 0805 470欧姆电阻器× 1 0805 2k欧姆电阻器× 1 0805 510欧姆电阻器× 1 0805 300欧姆电阻器× 1 0805 10k欧姆电阻器× 2 0805 270欧姆电阻器× 2 6毫米x 6毫米按钮× 2 SMD 6mm x 6mm高按钮× 1 软件应用程序和在线服务: Autodesk EagleCAD Autodesk Fusion 360 手动工具和制造机器: 3D打印机(通用) 烙铁(通用) 数码显微镜 早前我就设想有一种设备可以提醒用户,当他们的亲人经历了跌倒或按下紧急按钮。它使用ESP8266并组装在一块穿孔板上。它有一个LED,可以指示是否发生了跌落。该器件还具有非常基本的LiPo充电电路,没有指示灯。
2025-08-08 13:40:12 738KB 加速度计 电路方案
1
DUNE(深层地下中微子实验)是美国提议的长基线中微子实验,基线是从费米国家加速器实验室(Fermilab)到桑福德地下研究设施1300公里,该设施将容纳40 kt液态氩时间投影室( LArTPC)作为远端检测器。 该实验还将有一个细颗粒的近探测器,用于精确测量初始通量。 我们显示,通量和探测器附近的DUNE基线的能量范围是有利于观察Âm2eeV2规模的无菌中微子的γ-β-βe振荡,因此可以有效地用于测试所报告的非常高精度 LSND和MiniBooNE实验看到的振荡信号。 我们通过改变基线,探测器基准质量和系统不确定性来研究DUNE探测器对无菌中微子振荡的敏感性。 我们发现,目前在DUNE提出的近距离探测器探测器质量和基线将能够以良好的精度测试整个LSND参数区域。 可以看出,灵敏度对基线和检测器质量的依赖性很有趣,而对系统不确定性的依赖性很小。
2025-07-18 20:50:34 543KB Open Access
1
我们在Soudan地下实验室报告了在12升液体闪烁检测器中对μon年度调制的测量,其使用寿命超过4年。 检测器中的μon最小电离通过其观察到的脉冲形状和大的能量沉积来确定。 检测器中测得的μon速率为$ 28.69 \ pm 2.09 $$ 28.69±2.09每天muons,调制幅度为($$ 2.64 \ pm 0.07 $$ 2.64±0.07)%,相位为Jul $ 22 \ pm 36.2 $ $ 22±36.2天。 这种年度调制与平流层中有效大气温度的变化有关。 确定相关系数$$ \ alpha _ {T} $$αT为$$ 0.898 \ pm 0.025 $$ 0.898±0.025。 这可以解释为测量大气带电的钾离子与介子($$ K / \ pi $$ K /π)的比例,即$ 0.094 ^ {+ 0.044} _ {-0.061} $$ 0.094-0.061 + 0.044 $ E_ {p}> 7 $$ Ep> 7 TeV,与MINOS远距探测器的测量值一致。 为了进一步限制$$ K / \ pi $$ K /π比的值,对能量高达100 TeV的主要宇宙射线质子进行
2025-07-16 15:01:29 1.04MB Open Access
1
探索了拟议中的印度中微子观测所(INO)处的磁化铁量热计(ICAL)探测器对使用大气中微子的质量本征态ν3的不可见衰减的敏感性。 包含地球物质效应的完整的三代分析是在一个同时具有衰减和振荡的框架中执行的。 事实证明,大气中微子提供的宽能量范围和基线对于限制ν3寿命是极好的。 我们发现,在500 kton-yr的暴露量下,ICAL大气实验可以将90%C.L下的ν3寿命限制为τ3/ m3> 1.51×10-10 s / eV。 这比MINOS的范围要紧2个数量级。 隐形衰减对θ23和|Δm322|精度测量的影响 也被研究。
2025-07-16 12:32:40 1010KB Open Access
1
较强功率的激光辐照半导体探测器时既产生光电效应又产生热效应,提出了反映光电效应的载流子输运模型和反映热效应的热扩散模型.计算了不同激光辐照功率密度下PC型HgCdTe探测器内的光生载流子浓度和热平衡载流子浓度,由此对探测器的瞬变行为进行了仿真计算,仿真结果与实验结果相吻合.
2025-07-01 12:32:16 174KB 光电子学
1
在半导体材料领域中,InGaAs(铟镓砷化物)因其在近红外波段具有优异的光电特性而备受关注。PIN型光电探测器是一种具有内在层的光电二极管,其中P代表正掺杂层,I代表本征层,N代表负掺杂层。这种结构能够有效地分离光生载流子,从而提高器件的响应度和速度,使其在高速、高灵敏度的光电探测领域得到广泛应用。 silvaco是一种先进的半导体器件仿真软件,它能够对半导体器件的工作过程进行模拟和分析。通过silvaco软件仿真的InGaAs PIN型光电探测器,研究者和工程师可以深入理解器件内部的物理过程,以及如何通过改变材料参数、结构设计或外部电路设计来优化探测器的性能。 在silvaco仿真的环境中,用户可以根据具体需求选择不同的输出模块。例如,响应度模块能够输出探测器对不同光强的响应特性,这有助于设计者优化探测器的灵敏度;暗电流模块则提供了在无光照条件下器件电流的输出,这对于评估探测器的噪声水平和温度特性至关重要;瞬态响应模块则分析器件对光脉冲的反应速度,这对于研究器件在高速通信中的应用非常关键。LDR(动态范围)模块关注器件检测不同光强的能力,而量子效率模块则反映了器件转换光子为电子的效率。 silvaco仿真的InGaAs PIN型光电探测器不仅限于上述性能指标的分析,通过软件的参数调整,用户可以进一步研究如温度变化、光照角度、入射光波长等因素对探测器性能的影响。此外,通过仿真的手段,可以在不实际制造出物理样品的情况下,对探测器进行设计迭代,这极大地节省了研发成本,缩短了研发周期。 silvaco仿真的InGaAs PIN型光电探测器在实际应用中具有广泛前景。由于InGaAs材料的带隙较窄,使其对近红外光有很高的吸收效率,因此这种探测器在光纤通信、夜视成像、环境监测、医疗诊断等众多领域具有极大的应用潜力。通过silvaco仿真,可以对器件的性能进行优化,进而开发出更加高效、可靠、成本更低的光电探测器产品。 silvaco软件的用户界面友好,参数设置灵活多样,使得即使是复杂的器件结构也能简单快速地进行模拟。这种仿真工具为半导体光电器件的创新设计和性能优化提供了强有力的支撑,极大地推动了光电探测技术的发展。
2025-04-29 21:39:20 9KB silvaco InGaAs
1