数电课程设计交通灯控制电路,主车道通行45秒支路通行25秒,绿灯转换红灯中间黄灯闪5秒。
2025-08-27 16:10:41 55KB 课程设计
1
Android-SmartQueue 基于优先级队列写的一个SmartQueue(可控制多个线程的顺序执行、View的顺序显示) #效果: #Usage ##多个线程顺序执行 你可以创建一个ThreadPriorityQueue对象,然后通过.run()方法让线程开始执行,创建ThreadPriorityQueue对象的时候,你可以通过addThread()方法添加线程,其中第一个参数是Thread对象,第二个参数是你自己设置线程的优先级(值范围是1~10,优先级越高线程越先执行,当设置的值不在这个范围则默认为1): ThreadPriorityQueue mThreadPriorityQueue = new ThreadPriorityQueue.QueueBuilder() .addThread(thread1, 10).addThrea
2025-08-27 15:49:07 106KB Java
1
### PC与PLC通讯组件使用手册知识点详细解读 #### 1. 通讯组件概念与功能 **通讯组件**是一种动态链接库文件(DLL文件),用于实现PC系统与PLC系统之间的以太网数据通讯。该组件以编程方式提供与PLC通讯的方法函数,使得开发人员可以在PC系统的项目工程中引用该组件来高效地实现数据通讯。组件支持多种品牌和系列的PLC,具有多个功能函数,允许对PLC的各种数据类型进行读写操作,并且支持多线程。 #### 2. 支持的Windows开发环境 组件兼容Windows系统下的所有开发环境,包括但不限于Visual Basic (VB)、C#、Visual C++ (VC),以及Delphi、LabView等。这意味着开发者可以使用自己熟悉的开发工具来完成与PLC的通讯任务。 #### 3. 通讯组件的物理连接方式 通讯组件支持串口和以太网两种物理连接方式。串口支持RS232、RS485、RS422三种协议,其中RS232协议适合一对一通讯,而RS485和RS422可以实现一对一或多对多的通讯。以太网通过交换机可以实现更复杂的通讯模式,包括一对一、一对多以及多对多通讯。 #### 4. 数据类型支持 通讯组件支持多种数据类型,具体包括: - BYTE8: 8位无符号单字节数据 - INT16: 16位有符号整数 - UINT16: 16位无符号整数 - INT32: 32位有符号整数 - HEX32: 32位16进制字符 - REAL32: 单精度浮点数据 #### 5. 常用组件名称与对应表 组件名称对应表列出了不同厂商系列PLC所对应的连接方式及组件名称,例如西门子S7-300/S7-400系列使用WinTcpS7.DLL,而S7-1200/S7-1500系列使用ModbusTCP.DLL等。 #### 6. 函数与参数 组件提供了多个函数及其参数,以实现不同的通讯设置和数据操作,包括: - [EntLink]:用于设置PC和PLC的以太网通讯参数并建立连接。 - [ComLink]:用于设置PC和PLC的串口通讯参数并建立连接。 - [Bit_Test]:通过位的方式读取数据状态。 - [Bit_Set]:通过位的方式设置数据状态。 #### 7. 硬件接口说明 - **串口参数**:包括通讯端口、通讯速率、数据位、停止位和校验方式。 - **以太网参数**:包括PC端IP地址、网络端口、PLC的IP地址和通讯端口、机架号码和CPU插槽号码、调用系列号码以及通讯超时时间限制。 #### 8. 通讯组件的使用场景 此通讯组件广泛适用于各种自动化控制系统中,比如工业自动化、设备监控等,通过快速的数据通讯能力来实现系统间的实时交互。在实际使用中,开发者可以根据具体的PLC型号选择合适的通讯组件,并在项目中正确配置相关通讯参数,以确保数据通讯的准确性和效率。 #### 9. 维护与支持 在使用过程中,用户可能会遇到各种技术问题。文档中应当提供技术文档、FAQ、示例代码和联系方式等资源,以便用户能够快速解决遇到的问题。同时,厂商可能提供相应的技术支持服务,以保障用户能够顺畅地使用通讯组件。 #### 10. 注意事项 - 确保通讯组件与使用的PLC型号兼容。 - 在进行通讯参数配置时,应当严格按照实际硬件的设置进行配置。 - 在多线程环境中使用通讯组件时,需要注意线程安全问题,避免数据冲突。 通过以上对PC与PLC通讯组件使用手册的知识点详细解读,开发者可以更好地了解和利用该通讯组件,实现PC系统与PLC系统的高效数据通讯。
2025-08-27 15:18:04 126KB 通讯组件
1
内容概要:本文探讨了基于管道模型预测控制(TubeMPC)与基于LMI的误差反馈增益,在主动前轮转向(AFS)和稳定性控制(VSC)中的应用。研究通过MATLAB2020b和carsim2020进行仿真,展示了在120km/h车速和0.5附着系数条件下的单移线和双移线实验结果。文中详细介绍了TubeMPC的实现方法、LMI误差反馈增益的作用机制、AFS和VSC的具体应用方式,并提供了完整的仿真流程和结果分析。最终,研究证明了所提出的技术方案能有效提升车辆在高速和复杂路况下的稳定性和轨迹跟踪能力。 适合人群:从事车辆工程、自动控制领域的研究人员和技术人员,尤其是关注车辆稳定性控制和自动驾驶技术的专业人士。 使用场景及目标:适用于希望深入了解车辆稳定性控制技术的研究人员,以及需要评估和改进现有车辆控制系统的工程师。目标是提供一种高效、可靠的车辆控制解决方案,确保车辆在不同驾驶条件下的安全性。 其他说明:本文不仅提供了理论分析,还包括具体的仿真案例和代码实现,便于读者理解和复现研究成果。
2025-08-27 14:55:49 1.13MB
1
空调自控系统恒温恒湿控制:西门子PLC与MCGSpro触摸屏源代码解析与实践项目,空调自控系统恒温恒湿控制系统:西门子Smart200 PLC与MCGSpro触摸屏源程序实战项目分享,空调自控系统恒温恒湿控制系统PLC程序,西门子smart200PLC 源程序,MCGSpro 触摸屏源程序 项目无密码 实际应用 可以联系参考学习,取长补短。 ,空调自控系统; 恒温恒湿控制; PLC程序; 西门子smart200PLC; MCGSpro触摸屏源程序; 项目无密码; 实际应用; 参考学习; 取长补短。,无密码智能恒温恒湿控制系统源程序分享:西门子Smart200PLC与MCGSpro触摸屏联调实例
2025-08-27 10:16:11 2.39MB css3
1
6.11 定位及同步控制 6.11.1 同步控制 在 KEB COMBIVERT F5-M / S 中集成了同步及定位模块,在此模式下 PS.1,PS.13, PS.29,PS.36 和 PS.37 中定义的输入在上升沿触发,扫描时间为 250μs。 通过同步模块能够实现对多台电机进行同步控制。数台电机可以与主传动(控制传 动)角同步运行。相互间速度同步比例可进行单独调节。请勿对主传动进行控制操 作。只有在变频器配备第二增量编码器输入的情况下,才能启动同步模块。 通过 PS.0 位 0...2 选择同步运行或定位运行。 PS.0 定位/同步模式 位 0...2 启动定位或同步模式 0 关闭;定位或同步模式关闭;定位模块(PS.6)不激活,驱动器受控运行 在速度或转矩控制模式下(取决于 SC.0)。 1 同步模式 2..4 保留(关闭) 5 定位模式 6 实时定位模式 7 通过控制字启动 位 3...9 定位模式 仅用于定位模块(参见 6.11.7 章节) 位 10 通过斜坡发生器启动同步(oP.28) 0 同步信号触发后,从传动不按照 oP.28 定义的斜坡加速。启动偏置(PS.5) 对主传动增量作了定义,当主传动走过设定的脉冲数时,主传动和从传动将 同步运行。 1024 同步信号触发后,从传动按照 oP.28 定义的斜坡加速。这里 PS.5 为启动 输入和从传动位置之间的偏差,例如,如果启动输入位于从传动位置左 侧,则必须预先设置正向偏差。 有关仅用于定位模块的 PS.0 调节的详细说明请(参见 6.11.7 章节)。 同步控制可以通过可编程输入启动,通过启动同步运行,设定主传动位置与从传动 位置相同。 该输入通过 PS.2 决定: 定位/同步模式(PS.0) 定位/同步输入选择(PS.2) 位号 十进制值 输入 端子 0 1 ST(可编程输入“控制使能/复位”) X2A.16 1 2 RST(可编程输入“复位”) X2A.17 2 4 F(可编程输入“正向”) X2A.14 3 8 R(可编程输入“反向”) X2A.15 4 16 I1(可编程输入 1) X2A.10 5 32 I2(可编程输入 2) X2A.11 6 64 I3(可编程输入 3) X2A.12 7 128 I4(可编程输入 4) X2A.13 8 256 IA(内部输入 A) 无 9 512 IB(内部输入 B) 无 10 1024 IC(内部输入 C) 无 11 2048 ID(内部输入 D) 无
2025-08-26 22:10:01 9.38MB KEB变频器
1
内容概要:本文探讨了15kW充电桩的PSIM仿真设计,主要涉及三相维也纳PFC和三电平LLC的组合系统。系统输入为三相380Vac,输出为800Vdc。文中详细分析了这两种技术的工作原理及其在PSIM仿真实验中的表现,展示了它们在提高功率因数、降低谐波失真以及提升能量转换效率方面的优势。仿真结果显示,三相维也纳PFC显著提高了功率因数,减少了谐波失真;而三电平LLC则在800Vdc的输出电压下保持了高效的能量转换和平稳的电压电流波形。此外,文章还提出了未来优化控制策略的方向。 适合人群:从事电力电子、电动汽车充电设备研发的技术人员,尤其是对PSIM仿真工具和高效直流电源解决方案感兴趣的工程师。 使用场景及目标:适用于需要深入了解充电桩内部工作原理和技术细节的研究人员和工程师。目标是帮助他们掌握三相维也纳PFC和三电平LLC的具体应用方法,以便应用于实际项目中。 其他说明:本文不仅提供了详细的理论分析,还包括了部分仿真代码,有助于读者更好地理解和复现实验结果。
2025-08-26 22:08:30 764KB 电力电子
1
内容概要:本文介绍了COMSOL软件在三维多孔介质建模方面的强大功能,重点讨论了三个主要方面:孔隙率和孔径的精准控制、一键区分固相和孔相、以及多样化的颗粒设置。首先,在孔隙率和孔径控制方面,用户可以通过调整模型参数灵活改变孔隙的大小和数量,这对于研究流体传输和扩散至关重要。其次,COMSOL提供了一键式操作,可以简便地区分固相和孔相,帮助研究人员快速获取界面信息并分析其对整体行为的影响。最后,软件还支持设置五种不同粒径和含量的颗粒,这有助于更精确地模拟多孔介质中的颗粒分布。这些功能极大地提高了研究的灵活性和准确性。 适合人群:从事材料科学、地质工程、化工等领域研究的专业人士和技术人员。 使用场景及目标:适用于需要模拟和分析多孔介质特性的科研项目和工业应用,旨在提高对多孔介质内部结构及其对流体传输、物质扩散等现象的理解。 其他说明:文中提供的代码示例展示了如何利用COMSOL API进行相关设置,实际应用中还需结合具体物理和化学条件进行详细分析。
2025-08-26 21:30:24 406KB
1
COMSOL三维多孔介质:精确控制孔隙率与粒径分布,一键区分固相与孔相,实现便捷建模,comsol三维多孔介质 COMSOL三维多孔介质。 1.孔隙率孔径可控 2.一键区分固相孔相,简单方便 3.可设置五种粒径不同,含量不同的颗粒。 ,关键词:COMSOL; 三维多孔介质; 孔隙率孔径可控; 固相孔相区分; 颗粒粒径含量设置。,COMSOL三维多孔介质:孔径可控,粒径多样,一键区分相态 COMSOL三维多孔介质的建模技术是一种强大的工具,它允许研究人员和工程师精确控制多孔介质的孔隙率和粒径分布。在进行复杂的多孔介质模拟时,孔隙率和粒径是影响流体流动和物质传输的关键参数。通过精确控制这些参数,COMSOL软件提供了一种有效的方法来研究多孔材料的物理和化学行为。 孔隙率是描述多孔介质内部孔隙空间所占体积比例的一个参数,它直接影响到流体在多孔介质中的流动和反应动力学。在传统的建模方法中,对孔隙率的控制可能需要复杂的计算和大量的实验数据支持,而在COMSOL中,用户可以方便地通过界面进行设置,无需深入了解背后的复杂计算过程,大大节省了时间并提高了模型的精确性。 粒径分布则描述了多孔介质中固体颗粒的大小范围及其分布情况。在多孔介质的建模中,粒径分布的均匀性或非均匀性会影响流体在介质中的渗透性、扩散性和反应性。COMSOL软件中粒径分布的可设置性为研究者提供了极大的灵活性,可以模拟各种实际情况下颗粒的分布状态,进而研究其对多孔介质整体性能的影响。 一键区分固相与孔相是COMSOL三维多孔介质建模的另一大特点。固相代表多孔介质中的固体部分,而孔相则指介质中的孔隙空间。传统的建模方法中,需要通过复杂的数据处理和模型运算来区分这两部分,而在COMSOL中,这一过程被简化为一键操作,极大地提高了建模效率,让研究人员能够更快地进行迭代设计和模拟验证。 COMSOL软件还允许用户根据实际需要设置不同的颗粒粒径和含量。这意味着用户可以模拟出具有特定粒径分布和组成特征的多孔介质,从而研究在特定条件下的多孔介质行为,例如,在催化剂载体、过滤材料、土壤和岩石力学等领域。 COMSOL三维多孔介质建模技术为研究者提供了一种方便快捷、精确可控的模拟手段,极大地推动了材料科学、环境科学、化学工程等多个领域中关于多孔介质研究的深入进行。通过这种技术,研究者可以更加深入地理解多孔介质的微观结构对宏观性能的影响,从而设计出性能更优、应用更广的多孔材料。
2025-08-26 21:27:19 223KB gulp
1
无感FOC电机三相控制高速吹风筒方案详解:高效率、低噪音、低成本,AC220V 80W功率输出,最高转速达20万RPM,支持按键调试,原理图及PCB软件代码齐全。,无感FOC电机三相控制高速吹风筒方案 FU6812L+FD2504S 电压AC220V 功率80W 最高转速20万RPM 方案优势:响应快、效率高、噪声低、成本低 控制方式:三相电机无感FOC 闭环方式:功率闭环,速度闭环 调速接口:按键调试 提供原理图 PCB软件代码 ,关键词: 无感FOC电机; 三相控制; 高速吹风筒; 方案优势; 响应快; 效率高; 噪声低; 成本低; 电压AC220V; 功率80W; 最高转速20万RPM; 控制方式; 功率闭环; 速度闭环; 调速接口; 按键调试; 原理图; PCB软件代码; FU6812L+FD2504S。,基于无感FOC控制的高速吹风筒方案:FU6812L+FD2504S 20万RPM高效低噪风机
2025-08-26 19:47:26 78KB
1