基于ADRC自抗扰控制的电机转速控制Simulink仿真 1.一阶ADRC 2.二阶ADRC 3.可添加粒子群优化自抗扰控制参数, ,基于ADRC自抗扰控制技术的电机转速控制及Simulink仿真:一阶与二阶ADRC参数优化与实验研究,基于ADRC自抗扰控制的电机转速控制及其Simulink仿真研究:一阶与二阶ADRC的对比及参数优化方法,核心关键词:一阶ADRC; 二阶ADRC; 电机转速控制; Simulink仿真; 粒子群优化自抗扰控制参数,基于ADRC的电机转速控制Simulink仿真:一阶与二阶对比优化
2025-05-09 16:38:13 1.82MB 开发语言
1
内容概要:本文详细介绍了如何利用MATLAB及其工具箱进行机械臂的单智能体和多智能体控制系统的开发。首先,通过Robotics Toolbox创建机械臂模型,然后构建强化学习环境,设计奖励函数,并采用PPO算法进行训练。对于多智能体系统,讨论了协同工作的挑战以及解决方案,如使用空间注意力机制减少输入维度。此外,文章还探讨了从二维到三维控制的转换难点,包括观测空间和动作空间的设计变化,以及动力学模型的调整。文中提供了大量MATLAB代码片段,展示了具体实现步骤和技术细节。 适合人群:具有一定MATLAB编程基础和机器学习理论知识的研究人员、工程师。 使用场景及目标:适用于希望深入了解机械臂控制原理,特别是希望通过强化学习方法提高机械臂操作精度和灵活性的研发团队。目标是掌握如何构建高效的单智能体或多智能体控制系统,应用于工业自动化、机器人竞赛等领域。 其他说明:文章强调了实践中遇到的问题及解决方案,如动力学方程求解方法的选择、奖励函数的设计技巧等。同时提醒读者注意一些常见的陷阱,比如不当的动作空间设计可能导致的不稳定行为。
2025-05-07 08:55:44 1003KB
1
基于粒子群优化算法PSO优化SVM分类的Matlab代码实现:红酒数据集多分类实验,基于粒子群优化算法PSO优化SVM分类的红酒数据集Matlab代码实现与实验分析,粒子群优化算法PSO优化SVM分类—Matlab代码 PSO- SVM代码采用红酒数据集进行分类实验,数据格式为Excel套数据运行即可 输入的特征指标不限,多分类 可以替数据集,Matlab程序中设定相应的数据读取范围即可 提供三种可供选择的适应度函数设计方案 直接运行PSO_SVM.m文件即可 ,PSO; SVM分类; Matlab代码; 红酒数据集; 特征指标; 多分类; 适应度函数设计; PSO_SVM.m文件,PSO算法优化SVM分类—红酒数据集Matlab代码
2025-05-01 18:28:51 2.54MB 开发语言
1
MMC整流器仿真模型:环流抑制与排序算法均压方法的预测控制仿真研究(基于Matlab Simulink平台),MMC整流器仿真模型 MMC模型预测控制仿真 基于Matlab Simulink仿真平台 模型中包含环流抑制控制器 模型中添加基于排序算法的子模块均压方法 采用基于最近电平逼近NLM的调制策略 1.仿真均能正常运行,能够准确跟踪对应参考值 2.最近电平逼近调制+基于排序算法的均压策略 3.二倍频环流抑制控制 供MMC入门新学者学习参考。 ,核心关键词:MMC整流器仿真模型; MMC模型预测控制仿真; Matlab Simulink仿真平台; 环流抑制控制器; 排序算法的子模块均压方法; 最近电平逼近NLM调制策略; 仿真均能正常运行; 准确跟踪参考值; 二倍频环流抑制控制; MMC入门新学者学习参考。,MMC整流器仿真模型入门:预测控制与均压策略研究
2025-04-27 20:58:38 93KB sass
1
针对具有强非线性、时变、有纯滞后等综合复杂性的连续搅拌釜(continuous stirred tank reactor, CSTR)反应过程,把无限时域鲁棒二次目标函数进行分解,构成新目标函数, 并允许未来控制序列的第 1 个控制量作为自由决策变量的方式,提出了一种非线性鲁棒模 型预测控制方法,从而提高了算法的通用性,改善系统的性能。通过连续搅拌釜的实验研 究,实验结果说明了所提算法的有效性。 ### 连续搅拌釜的非线性模型预测控制方法 #### 概述 连续搅拌釜(Continuous Stirred Tank Reactor, CSTR)是化工行业中一种常见的反应器类型,被广泛应用于染料、医药、试剂、食品及合成材料等多个领域。然而,CSTR反应过程本身具有强烈的非线性、时变性和纯滞后等特征,这些特性使其控制变得极为复杂。传统控制方法往往难以满足这类系统的控制需求。因此,研究人员不断探索新的控制理论和技术以提高CSTR系统的稳定性和性能。 #### 非线性鲁棒模型预测控制方法 为了解决CSTR控制中的难题,研究人员提出了一种非线性鲁棒模型预测控制方法。该方法通过对无限时域鲁棒二次目标函数进行分解,并构建新的目标函数,允许未来控制序列的第一个控制量作为自由决策变量,从而提高了算法的通用性和系统的性能。这种方法的核心在于: 1. **鲁棒二次目标函数的分解**:将原本复杂的无限时域鲁棒二次目标函数分解成更简单的目标函数,这有助于简化计算过程,同时保持控制器设计的鲁棒性。 2. **自由决策变量的设计**:允许未来控制序列的第一个控制量作为自由决策变量,这种灵活性增强了控制策略的适应能力,能够更好地应对非线性、时变性和纯滞后等因素带来的挑战。 #### 控制策略的关键要素 - **模型预测控制**:基于预测模型来优化控制序列,使得系统能够在满足约束条件的前提下达到期望的性能指标。这种方法特别适合于处理包含约束的系统。 - **鲁棒控制**:旨在设计控制器时考虑不确定性和扰动,确保系统在面对未知变化时仍能保持稳定性。对于具有不确定性的CSTR系统而言,鲁棒控制尤为重要。 - **非线性控制**:针对系统的非线性特性,采用非线性控制策略来改善控制性能。这种方法通常比线性控制更加灵活且适用范围更广。 #### 实验验证 为了验证所提出的非线性鲁棒模型预测控制方法的有效性,研究人员进行了连续搅拌釜的实验研究。实验结果表明,这种方法能够有效地提高CSTR系统的性能,特别是在处理强非线性、时变性和纯滞后等复杂因素方面表现出了显著的优势。 #### 结论 针对具有复杂特性的连续搅拌釜反应过程,本文提出了一种非线性鲁棒模型预测控制方法。通过分解无限时域鲁棒二次目标函数并引入自由决策变量,该方法不仅提高了控制策略的通用性和灵活性,还有效改善了系统的整体性能。实验结果进一步证明了该方法的有效性和实用性,为CSTR系统的控制提供了一种新的解决方案。 随着化工过程控制技术的不断发展,非线性鲁棒模型预测控制作为一种先进的控制策略,将在解决复杂工业控制系统中的问题中发挥越来越重要的作用。
2025-04-26 16:47:01 494KB
1
【MADRL】多智能体价值分解网络(VDN)算法 ===================================================================== 资源包含VDN、QMIX算法的项目代码 ===================================================================== 多智能体强化学习(MARL, Multi-Agent Reinforcement Learning)中,一个关键挑战是如何在多个智能体的协作环境下学习有效的策略。价值分解网络(VDN, Value Decomposition Network)是解决这一问题的一种重要方法,特别是在 集中训练,分散执行(CTDE, Centralized Training and Decentralized Execution)框架中,VDN提供了一种分解联合价值函数的策略,使得多个智能体可以高效协作并学习。
2025-04-19 11:21:59 26KB 网络 网络
1
复现研究:基于NMPC的分布式轨迹跟踪控制算法在水下航行器中的应用与验证,复现研究:基于NMPC的分布式轨迹跟踪控制算法在水下航行器中的应用与验证,【复现】水下航行器(NMPC)非线性模型预测控制分布式轨迹跟踪 复现文献1: 《Distributed implementation of nonlinear model predictive control for AUV trajectory tracking》 复现文献2: 《Modified C GMRES Algorithm for Fast Nonlinear Model Predictive Tracking Control of AUVs》 1、利用水下机器人运动的动态特性,提出了一种新的分布式NMPC算法。 通过适当地将原始优化问题分解为更小的子问题,然后以分布式方式解决它们,可以显著减少预期的浮点操作(flops)。 2、证明了在分解子问题中所提出的收缩约束可以保证AUV轨迹的收敛性。 证明了该方法的递推可行性和闭环稳定性。 利用保证的稳定性,进一步开发了一种实时分布式实现算法,在控制性能和计算复杂度之间进行自动权衡。
2025-04-18 15:11:52 6.35MB xhtml
1
三电平T型逆变器中点电压平衡控制的模型预测控制及其Matlab Simulink仿真研究,三电平T型逆变器模型预测控制中点电压平衡控制,包括电流预测控制模型、功率预测控制模型,,Matlab simulink仿真(2018a及以上版本) ,三电平T型逆变器; 模型预测控制; 中点电压平衡控制; 电流预测控制模型; 功率预测控制模型; Matlab simulink仿真,基于Matlab Simulink的T型三电平逆变器中点电压平衡的预测控制模型研究 三电平T型逆变器作为一种新型的电力电子转换装置,因其在高压、大功率应用领域的独特优势而受到广泛关注。中点电压平衡是三电平逆变器稳定运行的关键技术之一,其核心在于通过精确控制中点电位,确保逆变器输出电压波形的质量和功率平衡,从而提高系统的稳定性和可靠性。模型预测控制(Model Predictive Control,MPC)是一种先进的控制策略,它通过建立被控对象的数学模型,预测未来的系统行为,并在此基础上优化控制输入,以实现对控制目标的精确跟踪和控制。 在本文研究中,三电平T型逆变器的模型预测控制技术被应用到中点电压平衡控制领域。具体而言,该研究涉及建立精确的电流预测控制模型和功率预测控制模型。电流预测控制模型关注于逆变器输出电流的预测,通过预测电流在不同控制策略下的变化,可以实时调节逆变器的开关状态,以达到减少中点电压波动的目的。而功率预测控制模型则着眼于功率流动的预测,通过调整功率交换来控制中点电压,这在改善电力系统动态响应和提高能效方面具有重要意义。 Matlab Simulink仿真工具被广泛应用于电力电子系统的模拟和分析中,尤其是对于复杂的多变量控制系统。通过Matlab Simulink,研究人员可以在不实际搭建物理系统的情况下,对三电平T型逆变器的模型预测控制策略进行设计、测试和优化。仿真平台可以提供直观的图形化界面,便于理解和分析系统的动态响应,同时,Matlab强大的计算功能能够处理复杂的数学模型和控制算法。 本研究在Matlab Simulink环境中构建了三电平T型逆变器的仿真模型,并对其模型预测控制策略进行了深入研究。仿真结果表明,通过模型预测控制能够有效实现中点电压的稳定,减少电压波动,提高逆变器的整体性能。此外,仿真模型的搭建为后续的硬件实验和实际应用提供了理论基础和实验指导,为逆变器的设计和优化提供了有力的技术支持。 在实际应用中,三电平T型逆变器模型预测控制中点电压平衡技术不仅可以用于工业电力系统,还可以应用于电动汽车充电站、可再生能源发电并网、轨道交通牵引供电系统等。这些领域的广泛应用,展现了模型预测控制在现代电力电子技术中的巨大潜力和广阔前景。 此外,研究中还涉及到了三电平T型逆变器的一些基础概念和技术细节,如逆变器的工作原理、三电平结构的特点、中点电压平衡的原理等,这些基础知识对于理解模型预测控制在中点电压平衡中的应用至关重要。 本文研究通过深入探讨三电平T型逆变器中点电压平衡控制的模型预测控制方法及其在Matlab Simulink中的仿真,为电力电子转换技术的发展贡献了重要的理论和实践成果。研究成果不仅提升了逆变器的技术性能,还为相关领域的科研和工程实践提供了参考和借鉴。
2025-04-14 16:47:57 74KB 哈希算法
1
在新能源技术领域,光伏和风电作为清洁可再生能源的代表,其发电效率的优化一直是研究热点。最大功率点跟踪(MPPT)技术是一种提高光伏发电系统能量转换效率的关键技术,它的基本原理是通过实时调整光伏阵列的工作点,使其始终在最大功率点工作。MPPT技术的核心在于算法的选择与实现,遗传算法(GA)和粒子群优化(PSO)算法是两种在MPPT控制策略中广泛应用的智能优化算法。 遗传算法(GA)是一种模拟生物进化过程的搜索算法,它通过选择、交叉和变异等操作,在问题的解空间中进行搜索,以寻找最优解。在MPPT的应用中,遗传算法能够对光伏系统的输出特性进行全局搜索,从而找到更接近最大功率点的占空比设置。与传统的爬山法等局部搜索策略相比,遗传算法能够在更广泛的搜索空间内进行优化,避免陷入局部最优。 粒子群优化(PSO)算法是一种群体智能优化算法,灵感来源于鸟群捕食的行为。在PSO算法中,每个粒子代表问题空间中的一个潜在解,粒子们通过相互之间的信息共享,在解空间中协同搜索最优解。在MPPT控制策略中,粒子群优化算法能快速追踪环境变化下的最大功率点,并且算法实现简单,参数调整方便,适合于实时动态变化的系统。 在线优化有源程序的实现,是指将MPPT控制策略编程实现,并通过仿真软件如Matlab/Simulink进行模拟,以验证算法的有效性。Matlab/Simulink作为一种强大的数学计算和系统仿真平台,提供了丰富的工具箱支持电力电子和控制系统的建模、仿真和分析。基于Matlab/Simulink开发MPPT控制策略,可以方便地进行算法设计和验证,提高了研究与开发的效率。 在文件名称列表中,“基于GA和PSO进行MPPT控制”和“Mppt-system-main”暗示了文件内容主要围绕遗传算法和粒子群优化算法在MPPT控制中的应用。文件可能包含GA和PSO算法的具体实现代码、MPPT控制器的设计与仿真模型以及优化结果的分析。参考文献的完整性则表明开发者不仅提供了程序和仿真模型,还提供了详细的理论依据和文献支持,有助于理解算法原理和进一步的学术研究。 该文件内容涉及了智能优化算法在新能源领域的应用、基于Matlab/Simulink的仿真技术以及MPPT控制策略的详细实现。这些内容对于从事新能源发电系统研究与开发的专业人员具有很高的实用价值和参考意义。
2025-04-11 21:47:00 57.76MB matlab MPPT simulink
1
轨迹跟踪CarSimMATLAB联合仿真模型预测控制横纵向协同控制 【打包文件包括】 -CarSim车型文件.cpar -MPC车速跟踪算法MPC_LongControl_Dyn_Alg.m -MPC横向路径跟踪算法MPC_LateralControl_Dyn_Alg_DLC3888.m -Simulink系统文件MPC_LateralControl_Dyn.slx -自己录制的CarSimMATLAB联合仿真一步步操作流程 在现代汽车系统中,轨迹跟踪作为一项关键技术,它的目的是使汽车能够按照预定的路径精确行驶。为了达到这一目的,研究人员和工程师们开发了多种技术手段,其中模型预测控制(MPC)与横纵向协同控制策略,已经成为了实现精确轨迹跟踪的重要方法之一。 模型预测控制(MPC)是一种先进的控制策略,它能够处理系统的多变量和时间延迟特性,并且能够考虑未来一段时间内的系统行为和约束条件,通过优化计算出当前时刻的最优控制策略。在汽车轨迹跟踪的应用中,MPC通过构建车辆运动模型,可以预测未来一段时间内车辆的行驶状态,并实时调整车辆的横纵向控制输入,以最小化与预设轨迹之间的偏差。 当MPC与其他控制策略结合,特别是横纵向协同控制时,可以实现对车辆横纵向运动的综合控制。横纵向协同控制是指同时对车辆的横向和纵向运动进行控制,以实现更为复杂的行驶任务。例如,在需要变道超车或者在狭窄道路上行驶时,车辆不仅要控制自身的纵向速度,还要控制横向位置,确保行驶的安全性和舒适性。 在实现轨迹跟踪的联合仿真中,CarSim和MATLAB/Simulink是两种常用的工具。CarSim是一个专业的汽车动力学仿真软件,它能够提供精确的车辆模型和复杂场景设置。而MATLAB/Simulink则是一个强大的仿真平台,它支持复杂的算法开发和系统级仿真。通过将CarSim与MATLAB/Simulink联合使用,研究人员可以在更加真实的环境下测试和验证轨迹跟踪控制策略,同时利用MATLAB强大的计算和优化能力,为车辆控制策略的开发提供强有力的工具支持。 在本次提供的压缩包文件中,包含了多个关键组件,如CarSim车型文件(.cpar)、MPC车速跟踪算法(MPC_LongControl_Dyn_Alg.m)、MPC横向路径跟踪算法(MPC_LateralControl_Dyn_Alg_DLC3888.m)、Simulink系统文件(MPC_LateralControl_Dyn.slx)以及相关的操作流程文档。这些文件为研究者们提供了完整的仿真环境和算法实现,使得他们可以模拟出复杂的道路情况,验证和改进轨迹跟踪算法。 此外,压缩包中还包含了一些文本和图片文件,这些文件可能是对于联合仿真模型预测控制横纵向协同控制的详细解析或案例分析,以及相关操作流程的可视化表达。这些内容对于理解联合仿真环境中的控制策略,以及如何操作仿真工具,进行仿真实验具有重要的指导意义。 轨迹跟踪技术的发展对于提升汽车安全性和舒适性具有重要意义。通过模型预测控制和横纵向协同控制策略,可以实现更为复杂和精确的车辆轨迹跟踪。而CarSim与MATLAB/Simulink的联合仿真为这一技术的发展提供了强有力的支撑,使得研究人员能够在更加接近实际环境的条件下测试和验证相关控制算法。而通过本次提供的压缩包文件,我们可以进一步探索和学习如何应用这些先进的技术和工具来提升轨迹跟踪的能力。
2025-04-10 20:53:32 828KB
1