基于Tent映射的混合灰狼优化算法:结合混沌初始种群与非线性控制参数的改进策略,基于Tent映射的混合灰狼优化算法:结合混沌初始种群与非线性控制参数的改进策略,一种基于Tent映射的混合灰狼优化的改进算法_滕志军 MATLAB代码,可提供代码与lunwen。 首先,其通过 Tent 混沌映射产生初始种群,增加种群个体的多样性; 其次,采用非线性控制参数,从而提高整体收敛速度; 最后,引入粒子群算法的思想,将个体自身经历过最优值与种群最优值相结合来更新灰狼个体的位置信息,从而保留灰狼个体自身最佳位置信息。 ,核心关键词:Tent混沌映射; 灰狼优化; 混合算法; 非线性控制参数; 粒子群算法思想。,滕志军改进算法:Tent映射混合灰狼优化算法的MATLAB实现
2025-06-18 01:39:14 435KB
1
基于RRT的路径规划优化及RRT改进策略探讨,改进RRT路径规划算法研究:优化与性能提升的探索,改进RRT 路径规划 rrt 改进 —————————————— ,改进RRT; 路径规划; rrt 改进,改进RRT路径规划算法研究 在现代机器人技术与自动化领域中,路径规划算法扮演着至关重要的角色,它直接影响着机器人的移动效率与执行任务的能力。快速随机树(Rapidly-exploring Random Tree,简称RRT)算法因其在高维空间中的高效性,成为了研究者们关注的焦点。RRT算法的基本思想是通过随机采样的方式构建出一棵不断延伸的树,逐步覆盖整个空间,最终找到一条从起点到终点的路径。 然而,传统的RRT算法在处理复杂环境或具有特定约束条件的问题时,可能存在效率不高、路径质量不佳等问题。因此,对RRT算法的优化与改进成为了学术界和工业界研究的热点。优化的方向主要包括提升算法的搜索效率、降低路径长度、提高路径质量、增强算法的实时性以及确保算法的鲁棒性等方面。 在探索路径规划算法的改进之路上,研究者们提出了各种策略。比如,通过引入启发式信息来引导采样的过程,使得树能够更快地向着目标区域生长;或者通过优化树的扩展策略,减少无效的探索,从而提高算法的效率。此外,还有一些研究集中在后处理优化上,即在RRT算法得到初步路径后,通过一些路径平滑或者优化的技术来进一步提升路径的质量。 针对特定的应用场景,如机器人在狭窄空间中的导航、多机器人系统的协同路径规划等,研究人员也提出了许多创新的改进方法。例如,可以在RRT的基础上结合人工势场法来处理局部路径规划中的动态障碍物问题,或者设计特定的代价函数来考虑机器人的动力学特性。 在研究的过程中,学者们还开发了许多基于RRT算法的变体。例如,RRT*算法通过引入回溯机制来改进路径,使得最终的路径不仅连接起点和终点,还能在保持连通性的同时,追求路径的最优化。还有RRT-Connect算法、Bi-directional RRT算法等,这些变体在保证RRT算法的基本特性的同时,通过一些策略上的调整来提升算法性能。 路径规划算法的研究领域充满了挑战与机遇。RRT算法及其改进策略的研究不仅为机器人导航提供了解决方案,也为其他领域如无人机飞行路径规划、智能车辆的自动驾驶等提供了借鉴。随着计算机技术的发展和算法的不断进步,我们可以预期未来的路径规划算法将会更加智能、高效和鲁棒。
2025-04-25 09:46:06 1.81MB rpc
1
yolov5改进 YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示: 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放; 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构; Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构; Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。 本资源包括对yolov5的改进策略和案例分析进行了详细阐述,有需要的朋友可以下载学习。
2024-05-02 16:22:56 6.5MB 目标检测 yolov5 人工智能
1
YoloV8改进策略:将CIoU替换成Wise-IoU,幸福涨点,值得拥有,还支持EIoU、GIoU、DIoU、SIoU无缝替换。.html
2023-04-17 14:18:20 9.75MB
1
路径规划综述,常用的路径规划算法及改进策略
2022-09-22 19:07:22 781KB 路径规划 蚁群算法 算法优化
1
电网企业人力资源管理信息化中存在的问题及改进策略.docx
2022-02-26 09:00:07 20KB 解决方案
1
浅析煤炭企业信息化建设的现状及改进策略.docx
2022-02-22 10:00:19 22KB 解决方案
1
【精品文档-管理学】中学班干部管理现状分析及改进策略_其它管.docx
2022-01-27 09:10:40 50KB word文档 管理类文档
针对人工蜂群算法存在易陷入局部最优、收敛速度慢的缺陷,提出一种改进邻域搜索策略的人工蜂群算法.首先,将混沌思想和反向学习方法引入初始种群,设计混沌反向解初始化策略,以增大种群多样性,增强跳出局部最优的能力;然后,在跟随蜂阶段根据更新前个体最优位置引入量子行为模拟人工蜂群获取最优解,通过交叉率设计更新前个体最优位置,并利用势阱模型的控制参数提高平衡探索与开发的能力,对观察蜂邻域搜索策略进行改进,以提高算法的收敛速度和精度;最后,将改进人工蜂群算法与粒子群算法、蚁群算法以及其他改进人工蜂群算法进行比较,利用12个标准测试函数进行仿真分析.结果表明,改进算法不仅提高了收敛速度和精度,而且在高维函数优化方面具有一定的优势.
1
【深度学习】Cifar-10-探究不同的改进策略对分类准确率提高【深度学习】Cifar-10-探究不同的改进策略对分类准确率提高
2021-11-26 15:01:04 180.64MB 深度学习 cifar
1