内容概要:本文深入探讨了新能源汽车动力电池充电系统的设计与仿真,涵盖了从硬件电路设计到软件控制策略的全过程。首先介绍了动力电池的发展背景及其重要性,随后详细描述了硬件电路设计,包括电压电流检测传感器、LCD显示器、按键等核心部件的选择与应用。接着阐述了MATLAB和Proteus仿真工具的应用,特别是SPWM模型、PID控制模型的构建与优化。此外,文章还讨论了常见的故障分析方法,并提供了具体的故障案例分析。最后,通过一系列实验验证了设计方案的有效性和可靠性。 适合人群:从事新能源汽车技术研发的专业人士,尤其是对电池管理系统(BMS)感兴趣的工程师和技术人员。 使用场景及目标:适用于希望深入了解动力电池充电系统设计原理的研究人员和工程师。目标是掌握从硬件选型、电路设计到软件控制策略的完整流程,能够独立完成类似项目的开发与调试。 其他说明:文中提供的资料包括PPT、说明书、原理图、仿真模型、源代码等,有助于读者全面理解和实践动力电池充电系统的设计。
2025-06-16 10:20:00 3.55MB
1
风机、泵和离心机等旋转设备是广泛应用于工业生产和日常生活的重要设备。 在“服务型制造”的转变推 动下,智能化、自动化以及数字化是这些设备的发展趋势,也是提高设备安全性、可靠性的重要方式。 通过现场检测 端和远程Web端的软、硬件设计,结合经典故障诊断算法与利用大数据的人工智能诊断方法,开发了低成本、高开 放性振动监测与故障诊断系统,实现了旋转设备的运行状态监测与故障在线诊断和远程协同会诊功能,顺应智能制 造的趋势,提供了针对风机等旋转设备运维的可行方案。 关键词:旋转设备 振动监测 故障诊断 系统设计 ### 基于Python的振动监测与故障诊断系统开发 #### 一、引言 振动烈度作为评估泵、风机及齿轮箱等旋转机械设备运行状况的关键指标,在工业领域扮演着重要角色。传统的手持式测振仪虽能进行振动强度测量,但依赖人工记录的方式存在诸多不足,比如容易出错或数据遗漏,并且缺乏对振动数据的进一步分析与故障诊断功能。随着技术进步,出现了具备简单频谱分析功能的点检设备,尽管如此,它们在诊断方面的能力仍然有限。 近年来,现场振动分析与故障诊断系统应运而生,虽然能够通过传统方法实现较为精确的故障诊断,但成本较高,且系统相对封闭,扩展功能时面临挑战。与此同时,计算机技术和大数据应用的快速发展为人工智能诊断方法带来了新的机遇。相比于传统方法,人工智能诊断更加依赖于历史数据,对于专业诊断人员的经验要求较低,这为提高诊断准确率和效率提供了可能。 为了融合传统诊断技术和人工智能的优势,克服现有振动监测系统的局限性(如成本高昂和开放性不足),本研究采用Python这一开源编程语言,结合合适的硬件配置,开发了一款振动故障监测系统。该系统不仅成本低廉、开放性强,而且易于集成最新的监测与智能诊断算法,并实现了现场诊断与远程协同诊断等多种诊断方式。 #### 二、系统的设计与开发 ##### 2.1 系统的整体方案 **系统架构**:如图1所示,本系统由现场检测端和远程Web端两部分组成。现场检测端主要负责信号采集与初步处理,而远程Web端则侧重于数据存储、分析以及故障诊断结果的展示。 - **现场检测端**:配备有高精度的振动传感器和数据采集卡,用于实时采集设备的振动信号,并将数据上传至远程服务器。此外,现场端还内置了一些基础的信号处理功能,如滤波、特征提取等,以减少传输的数据量。 - **远程Web端**:主要包括数据处理模块、故障诊断模块和用户界面。其中,数据处理模块负责对接收的数据进行更深入的处理和分析;故障诊断模块结合经典故障诊断算法与人工智能方法,实现对故障的准确识别;用户界面则提供直观的操作界面供用户查看设备状态和诊断结果。 ##### 2.2 硬件选型与软件实现 - **硬件选型**:考虑到成本控制和性能需求,本系统选用了性价比较高的振动传感器和数据采集卡。此外,为确保数据的安全性和完整性,采用了稳定的网络传输设备。 - **软件实现**:系统的核心部分采用Python语言编写,利用其丰富的库资源(如NumPy、Pandas、Scikit-learn等)进行数据处理与分析。对于人工智能诊断方法的应用,选择了TensorFlow和Keras框架来构建模型。同时,为了便于用户的操作和维护,系统前端采用Django框架搭建了一个简洁易用的Web界面。 ##### 2.3 数据处理与故障诊断 - **数据预处理**:原始采集的振动信号可能存在噪声干扰,因此首先需要进行滤波处理。此外,还需要进行特征提取,将原始信号转换成可用于后续分析的形式。 - **经典故障诊断算法**:本系统集成了几种经典的故障诊断算法,如小波变换、FFT(快速傅里叶变换)等,用于提取振动信号中的关键特征,帮助识别设备的工作状态。 - **人工智能诊断方法**:除了传统方法外,还引入了深度学习模型进行故障诊断。通过对大量历史数据的学习,模型能够自动识别不同类型的故障模式,并给出相应的诊断结果。 #### 三、系统功能与优势 - **低成本**:通过优化硬件配置和采用开源技术,降低了系统的总体成本。 - **高开放性**:采用Python语言开发,使得系统具备良好的可扩展性,易于集成新技术和算法。 - **远程协同诊断**:支持远程Web端访问,用户可以在任何地方实时监控设备状态并参与诊断过程。 - **多诊断方式**:结合了传统故障诊断算法与人工智能方法,提供了多种诊断手段,提高了诊断的准确性和效率。 基于Python的振动监测与故障诊断系统的开发,不仅顺应了智能制造的趋势,也为风机等旋转设备的运维提供了一种高效、经济的解决方案。
2025-06-12 18:35:58 1.36MB python
1
内容概要:本文详细介绍了西门子HMI(人机界面)和PLC(可编程逻辑控制器)在工业自动化系统中的协同应用,特别是梯形图在故障诊断中的重要作用。文章探讨了如何通过梯形图快速定位故障点,结合日志记录和报警信息进行深入分析。同时,提出了精简报警条目的方法,如过滤不常用报警信息、分类整合重要报警信息、设置报警阈值和优先级。最后,强调了实现偶发性故障trace可追溯的功能,通过对关键数据变化的记录和历史数据分析,帮助发现潜在故障隐患并采取预防措施。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些负责系统维护和故障排除的专业人士。 使用场景及目标:适用于需要提升工业自动化系统可靠性、稳定性的场合,旨在减少系统停机时间、降低维护成本,提高操作人员的工作效率和准确性。 其他说明:本文提供了实用的技术手段和具体实施步骤,有助于读者更好地理解和应用西门子HMI和PLC的相关技术和工具。
2025-06-10 12:04:20 277KB
1
在电力系统中,变压器是至关重要的设备,负责电压转换与电能传输。然而,变压器可能会因为各种原因出现故障,这需要我们及时进行诊断和处理。本项目提供的代码着重于利用bp神经网络对变压器气体故障进行分类,这是一种基于机器学习的方法,能够通过分析变压器油中气体的成分和浓度来判断故障类型。 bp神经网络(Backpropagation Neural Network)是一种常见的多层前馈神经网络,它通过反向传播算法来调整权重和偏置,以最小化预测结果与实际值之间的误差。在这个项目中,bp神经网络被用作故障识别模型,通过学习已知的故障案例数据,建立一个能够预测不同故障类别的模型。 `main.m`和`main1.m`很可能是代码的主程序文件。`main.m`通常包含整个项目的入口点,负责设置参数、加载数据、构建网络结构、训练模型和进行测试。`main1.m`可能包含对`main.m`的补充或改进,例如不同的网络架构、优化算法或者训练策略。 `maydata.mat`文件可能是存储了预处理后的数据集,包含了变压器故障的特征数据和相应的标签。这些特征可能包括变压器气体的种类(如氢气、乙炔、一氧化碳等)、气体的浓度以及其他可能影响故障类型的指标。MATLAB的`.mat`文件可以方便地存储和加载矩阵数据,非常适合用于机器学习项目。 `数据.xlsx`文件则可能是原始数据源,以Excel表格的形式记录了详细的故障案例信息。每一行代表一个样本,列可能包含气体浓度、故障类型等信息。在项目开始时,这些数据会被读入并转化为适合神经网络训练的格式。 在实施这个项目时,首先要进行数据预处理,包括数据清洗、缺失值处理、异常值检测以及特征工程。接着,将预处理好的数据分为训练集和测试集,训练集用于训练神经网络,而测试集用于评估模型的泛化能力。 神经网络的构建通常包括定义输入层、隐藏层和输出层,选择合适的激活函数(如Sigmoid、ReLU等),并设定学习率、迭代次数等超参数。在bp神经网络中,权重和偏置会通过反向传播算法逐步更新,直到网络的输出误差达到可接受的范围。 训练完成后,模型会根据新的气体数据进行故障分类。为了提高模型的稳定性和预测精度,还可以采用集成学习方法,如bagging、boosting或stacking,结合多个bp神经网络的预测结果。 这个项目通过bp神经网络对变压器气体故障进行分类,旨在提供一种有效的故障诊断工具,帮助电力系统维护人员及时发现并处理潜在的问题,保障电力系统的安全稳定运行。
2025-06-10 10:46:52 15KB 神经网络 故障分类 变压器故障
1
2025免费毕设附带论文 微信小程序+SpringBoot+Vue.js 启动教程: https://www.bilibili.com/video/BV1BfB2YYEnS/?share_source=copy_web 讲解视频:https://www.bilibili.com/video/BV1BVKMeZEYr/?share_source=copy_web 在当今信息技术飞速发展的背景下,各行各业对于维护设备正常运行的需求日益增长,这推动了设备故障报修管理系统的出现与发展。本文详细介绍了这样一个系统的设计与实现,该系统采用了微信小程序作为前端展现平台,后端则基于SpringBoot和Vue.js进行开发,是一个集成了最新技术的综合性解决方案。 系统前端使用微信小程序作为用户交互界面,微信小程序以其无需下载安装、即用即走的特性,为用户提供了一个便捷的使用环境。用户可以通过微信小程序快速提交设备故障报修请求,查看报修进度,以及与维修人员进行实时沟通。这样的设计大幅提升了用户体验,使得报修流程更加透明化,也大大提高了工作效率。 后端方面,系统选用SpringBoot作为服务器端开发框架。SpringBoot极大地简化了基于Spring的应用开发,通过自动配置使得项目搭建更加高效。它提供了独立运行的特性,可以快速创建独立的、产品级别的Spring基础应用,使得开发人员能够专注于业务逻辑的实现,而不用过多担心项目结构的配置问题。在设备故障报修管理系统中,SpringBoot负责处理业务逻辑、数据库交互等后台事务,保证了系统的稳定性和可靠性。 此外,系统前端的界面则是利用Vue.js进行构建。Vue.js是一个渐进式JavaScript框架,它不仅易于上手,而且轻量高效,适合于开发交互式的用户界面。在本系统中,Vue.js负责渲染用户界面,将数据和视图进行动态绑定,使得界面可以灵活地响应数据变化。配合微信小程序平台,Vue.js能有效提升页面渲染速度和用户体验。 系统还采用了目前流行的前后端分离的开发模式,这种模式下前后端通过API接口进行数据交互,使得前后端开发可以并行作业,大幅提高开发效率。同时,这种模式也使得系统的维护变得更加便捷,各个模块之间的耦合度降低,便于未来进行功能扩展或维护升级。 作为毕业设计项目,该系统不仅在技术实现上紧跟潮流,而且在功能设计上也贴近实际应用需求。它不仅能够帮助用户快速报修,还能让管理人员高效地管理报修流程,跟踪维修进度,统计报修数据等,极大地提升了企业设备管理的智能化水平。 值得一提的是,开发者还提供了启动教程和讲解视频,方便了使用者和学习者快速掌握系统的使用和开发过程,这对于学生或开发者来说无疑是一大福音。这些教程和视频资源的共享,也体现了一种开放共享的精神,促进了知识的传播和技术的交流。 这不仅仅是一个设备故障报修管理系统,更是一个融合了现代信息技术的创新解决方案,它的出现将为设备管理领域带来新的变革。通过微信小程序、SpringBoot和Vue.js的有机结合,该系统不仅为用户提供了高效便捷的服务,也为开发人员提供了高效、稳定的开发体验,具有很高的实用价值和广泛的应用前景。
2025-06-09 23:30:11 51.4MB java vue.js springboot 毕业设计
1
内容概要:本文介绍了Pensim仿真软件及其在青霉素发酵过程中的应用,重点探讨了非线性过程故障检测的方法和技术。文中详细描述了Pensim软件的安装步骤、使用方法,并提供了两个Excel文件,分别记录了正常工况和故障1(底物流加速度以10%幅度阶跃降低)下300小时的发酵数据。通过Matlab代码展示了如何读取和分析这些数据,同时附带两篇相关论文,深入探讨了青霉素发酵过程数据集的研究成果。 适合人群:从事生物制药、化工领域的研究人员和技术人员,尤其是对发酵过程和故障检测感兴趣的从业者。 使用场景及目标:适用于需要进行青霉素发酵过程建模、故障诊断和优化的实验室或企业。主要目标是通过仿真和数据分析,提升对非线性故障的理解,改进生产工艺,确保产品质量。 其他说明:Pensim软件不仅可以生成不同类型的故障数据,还可以帮助用户深入了解工业过程中的复杂动态行为。提供的Matlab代码和论文资料有助于进一步开展相关研究和实际应用。
2025-06-07 22:55:06 2.41MB
1
内容概要:本文详细介绍了经验模态分解(EMD)算法及其在MATLAB 2018版中的具体应用。EMD是一种用于处理非平稳信号的强大工具,能够将复杂信号分解为多个本征模态函数(IMF)。文中通过具体的代码实例展示了如何读取Excel数据进行EMD分解,并通过可视化手段展示分解结果。同时,文章讨论了如何利用均方根误差(RMSE)评估分解效果,并提供了几种优化技巧,如选择适当的插值方法、处理高频噪声以及使用并行计算加速处理速度。此外,还分享了一些实战经验和应用场景,如机械故障诊断和金融数据分析。 适合人群:具有一定MATLAB编程基础和技术背景的研究人员、工程师,特别是在信号处理、故障诊断等领域工作的专业人士。 使用场景及目标:适用于需要处理非平稳信号的场合,如机械设备故障检测、金融数据分析等。主要目标是帮助读者掌握EMD的基本原理和实现方法,提高信号处理和故障诊断的准确性。 其他说明:文中提供的代码可以直接应用于实际项目中,但需要注意数据格式和版本兼容性等问题。对于初学者,建议逐步理解和修改代码,确保每一步都符合预期。
2025-06-02 15:20:33 2.57MB
1
内容概要:本文档详细介绍了基于SABO-VMD-SVM的轴承故障诊断项目,旨在通过融合自适应块优化(SABO)、变分模式分解(VMD)和支持向量机(SVM)三种技术,构建一个高效、准确的故障诊断系统。项目背景强调了轴承故障诊断的重要性,特别是在现代制造业和能源产业中。文档详细描述了项目的目标、面临的挑战、创新点以及具体实施步骤,包括信号采集与预处理、VMD信号分解、SABO优化VMD参数、特征提取与选择、SVM分类和最终的故障诊断输出。此外,文档还展示了模型性能对比的效果预测图,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,特别是对MATLAB有一定了解的研发人员或工程师,以及从事机械设备维护和故障诊断工作的技术人员。 使用场景及目标:①适用于需要对机械设备进行实时监测和故障预测的场景,如制造业、能源行业、交通运输、航天航空等;②目标是提高故障诊断的准确性,减少设备停机时间,降低维修成本,确保生产过程的安全性和稳定性。 阅读建议:由于项目涉及多步骤的技术实现和算法优化,建议读者在学习过程中结合理论知识与实际代码,逐步理解和实践每个环节,同时关注模型性能优化和实际应用场景的适配。
2025-06-02 14:49:27 36KB MATLAB VMD 轴承故障诊断
1
滚动轴承是机械设备中的关键部件,其健康状态直接影响设备的运行效率和可靠性。当轴承出现故障时,必须及时诊断并采取修复措施,以避免更大的损失。本讲稿关注的是利用MATLAB进行滚动轴承故障诊断的方法。 确定轴承的故障特征频率至关重要。在案例中,轴承型号为6205-2RS JEM SKF,转速为1797rpm,滚珠个数为9,滚动体直径为7.938mm,轴承节径为39mm,接触角为0。根据这些参数,可以计算出外圈、内圈、滚动体以及保持架外圈的故障特征频率,分别为107.34Hz、162.21Hz、70.53Hz和11.92Hz。 接着,对轴承故障数据进行时域波形分析。通过导入MATLAB中的Test2.mat数据,进行快速傅里叶变换(FFT)得到时域图,并计算出时域信号的特征值,如有效值、峰值、峰值因子、峭度、脉冲因子和裕度因子。这些特征值有助于理解信号的基本性质和异常程度。 然后,进行了包络谱分析。通过对信号应用经验模态分解(EMD),得到9个内在模态函数(IMF)和一个残余量。通过与原信号的相关性分析,选择相关系数最大的IMF1进行希尔伯特变换,得到的包络谱揭示了故障信息。在包络谱图中,前三个峰值频率58.59Hz、105.5Hz、164.1Hz与理论计算的特征频率相对比,表明故障可能发生在内圈。 MATLAB程序1展示了如何进行原始信号的时域分析和小波去噪处理。通过ddencmp和wdencmp函数,可以有效地去除噪声,使信号更清晰。程序2则演示了EMD分解和Hilbert包络谱的计算过程,通过emd函数分解信号,计算峭度,并使用emd_visu函数可视化结果。 滚动轴承故障诊断通常包括参数计算、时域分析、频域分析以及高级信号处理技术的应用,如EMD和希尔伯特变换。MATLAB作为强大的数据分析工具,对于这类问题提供了强大的支持,能够帮助工程师准确识别轴承的故障模式,从而及时采取维护措施。
2025-05-28 13:38:25 271KB matlab
1
信号调理电路:
2025-05-28 10:50:42 1.86MB 多路故障报警
1