图 27.12 估计生存概率 单击执行后,报表显示估计和置信区间,如 Meeker 和 Escobar 的实例 19.8 所示。 图 27.13 生存概率 实例:区间删失加速失效时间模型 继续讲解 Meeker 和 Escobar [第 508 页和附录 C.15] 的另一个实例,IC设备02.jmp 给出的数据 中失败发生在检验区间之间。 Reliability 样本数据文件夹中的数据如图 27.14 所示。 图 27.14 IC设备02 数据 此模型使用两个 y 变量,包含失效时间的上限和下限。右删失时间显示为缺失上限。要执行 分析,请选择分析 > 生存和可靠性 > 参数生存模型拟合,其中 HoursL 和 HoursU 作为事件时间, Count 作为频数,而 DegreesC 作为模型效应。得到的回归图为时间与温度图。
2025-05-20 10:33:51 11.69MB 数据挖掘 数据分析
1
假设你是一个超帅的医生,诊断肿瘤,你需要根据不同的病人症状来判断症状间的关系,规律,在不同阶段给病人开药,提高他活命的机会。生病的症状有很多种,彼此之间也是有关系的,比如因为你感冒了,所以发烧了,咳嗽了,流鼻涕了。所以我们需要分析不同症状之间的关系和规律,在病情恶化前尽量截断。 目标: 1. 借助三阴乳腺癌的病理信息,挖掘患者的症状与中医证型之间的关联关系。 2. 对截断治疗提供依据。 数据挖掘技术在医疗健康领域的应用日益广泛,特别是在中医领域,数据挖掘技术可以帮助医生通过分析大量的患者临床信息,挖掘出症状与证型之间的潜在关联规则。这一过程不仅能够帮助医生更加精确地诊断和治疗,还能够在疾病的早期阶段预测其发展趋向,从而采取有效的干预措施。 在本案例中,所关注的特定场景是使用数据挖掘技术来分析乳腺癌患者的中医证型关联规则。乳腺癌作为女性中高发的恶性肿瘤,其早期诊断和治疗对于提高患者的生存率和生活质量至关重要。通过分析患者的病理信息以及症状数据,可以揭示症状与中医证型之间的内在联系,进而为中医临床实践提供科学依据,指导医生对症下药。 数据挖掘的目的是为了在众多的临床症状数据中发现潜在的、有价值的规律,这通常涉及大量的数据收集和预处理工作。在获得有效的数据集后,研究人员会应用一系列的数据分析方法,包括但不限于关联规则挖掘算法,以识别不同症状与证型之间的关系。关联规则挖掘是一种在大型事务数据库中发现频繁模式、关联、相关性或结构的方法,它能在海量数据中寻找项集间的有趣关系。在中医证型的关联规则挖掘中,研究者会特别关注那些能够为中医诊断和治疗提供参考的规则。 在本项目中,为了实现上述目标,研究者们使用了多种数据科学工具和库,其中Python作为一门广泛应用于数据处理和分析的编程语言,扮演了核心角色。Python的数据科学库pandas为数据的读取、处理和分析提供了强大的支持,使得复杂的数据操作变得简单高效。通过pandas库,研究者可以轻松地清洗和转换数据,为后续的统计分析和模型构建打下坚实的基础。 此外,关联规则挖掘通常还需要利用诸如Apriori算法、FP-Growth算法等经典算法。这些算法能够高效地处理大型数据集,并从中提取出满足最小支持度和最小置信度阈值的强关联规则。这些规则揭示了数据中项之间的共现模式,从而帮助研究人员和医生理解症状间复杂的相互作用和关联。 在获得中医证型关联规则之后,研究者将分析这些规则在病情的不同阶段的作用,并尝试构建一套规则集,为截断治疗提供依据。截断治疗是指在疾病发展的早期阶段,通过药物干预等手段来阻断疾病的发展,以期达到更好的治疗效果。通过对规则的深入分析,医生能够更加准确地判断病情,制定更为个性化的治疗方案,从而提高患者的生存机会。 在技术实现方面,研究者将通过编程语言和数据科学库实现数据的挖掘流程。首先进行数据的收集和预处理,然后应用关联规则挖掘算法提取信息,接着对结果进行评估和解释,最后将挖掘出的规则应用于临床实践中。在实际操作中,可能还需要对数据进行交叉验证、模型评估等步骤,以确保挖掘出的规则具有足够的准确性和可靠性。 通过数据挖掘技术的应用,中医证型关联规则的挖掘不仅能够促进对中医理论的现代诠释,还能在实际临床中发挥指导作用,提高治疗效果。随着医疗数据科学的发展,类似的数据挖掘应用将越来越多地出现在未来的医疗健康领域,为医生和患者带来更多福音。
2025-04-06 13:59:37 133KB 数据挖掘 数据分析 python pandas
1
基于在线教学平台的数据挖掘与学习行为分析超星集团数据集
2025-04-04 21:35:29 104.36MB 数据挖掘 数据集
1
内容概要:本文介绍了名为‘DeepSeek+DeepResearch’的研发平台及其应用,涵盖从数据挖掘、数据分析到数据可视化等一系列任务。它能帮助用户实现高效精确的任务执行,例如爬虫数据采集、文件数据读取及文本集成等工作,特别是涉及复杂任务,如长思维链分析与多任务处理。文章还详细介绍了DeepSeek R1和Claude 3.5 sonnet等几个主要模型的特点,对比了这些模型在不同任务中的表现,讨论了它们各自的优势和劣势,包括性能平衡、多模态支持、可解释性以及轻量化设计等方面的特色。此外,文章探讨了这些模型的应用前景及未来发展方向,如在教育、金融、医疗、广告和智能客服等多个领域提供创新的支持和服务。 适合人群:从事数据处理的专业人士,科研工作者和有兴趣深入了解AI在文本、数据分析与应用领域的开发者与研究人员。 使用场景及目标:该系统适用于大数据量、高精度处理的任务,特别是在需要多模态处理和支持多种语言的情况下;此外,在涉及复杂逻辑推理或需要解释性的场合尤为合适。具体的应用目标包括但不限于提升数据采集的速度和准确度,优化数据分析流程并提高其结果的价值,以及改进现有系统的用户体验和功能丰富度等。 其他说明:尽管这些AI工具有着诸多优点,但也面临着诸如语言混杂问题以及长文本处理等方面的挑战。为了更好地利用此类技术,用户应当结合具体的业务需求来考虑使用哪种工具更为适宜,并密切关注该领域的未来发展动态,及时采纳最新的科技成果以维持竞争力。
2025-02-23 15:30:51 8.31MB 自然语言处理 数据挖掘 数据可视化
1
数据集齐全(60k+数据) 所用方法多,不论老师要求什么,总有符合用得上(分类,逻辑回归,时间序列) 代码+数据集+报告一条龙服务。 内容说明: 数据预处理,数据清洗,对数据进行描述性分析,统计分析,相关性分析,用ggplot2画图。并分别用逻辑回归和决策树分类建立模型。和用时间序列预测数据。 难度不低于课程实践
2024-07-02 10:43:28 17.94MB r语言 逻辑回归 数据挖掘
数据标准化(Normalization)是指:将数据按照一定的比例进行缩放,使其落入一个特定的小区间。 为什么要进行数据标准化呢? 去除数据的单位限制,将其转化为无量纲的纯数值,便于不同量级、不同单位或不同范围的数据转化为统一的标准数值,以便进行比较分析和加权。 通过手写Python代码对海伦约会对象数据集完成数据标准化归一化的预处理。 其中包含: (1)Min-Max标准化 (2)Z-Score标准化 (3)小数定标标准化 (4)均值归一化法 (5)向量归一化 (6)指数转换
2024-05-12 16:42:06 981B python 机器学习 数据挖掘 数据预处理
1
抖音用户浏览行为数据集 文章: [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(一)](https://blog.csdn.net/m0_53054984/article/details/136121177) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)](https://blog.csdn.net/m0_53054984/article/details/136123131) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(总)](https://blog.csdn.net/m0_53054984/article/details/136122988) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(代码部分)](https://blog.csdn.net/m0_53054984/article/details/136455033)
2024-04-08 15:29:37 143.21MB 数据挖掘 数据集
1
内容概要:10G的Python数据分析与挖掘实战学习视频,包括了Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例 适合人群:具备一定编程基础,工作1-3年的研发人员 能学到什么:Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例 阅读建议:10G的Python数据分析与挖掘实战学习视频,包括了Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例。
2024-01-18 14:27:38 72B Python 数据挖掘 数据分析 Hadoop
1
按照后期进行数据分析的需求,对数据进行预处理。 -描述性统计:选择合适的方法对数据进行统计分析。包括对数值型和类别型属性的统计,并对分析结果进行图形化的展示(使用ggplot2或者lattice包)。 -推断性统计:选择合适的假设检验方法,分析属性间的相关性、两组数据间是否具有显著性差异,分析结果并给出结论及必要的图形展示。 - 数据挖掘 根据数据特征及需求,利用分类、聚类或时间序列方法挖掘蕴含在数据中的模式及必要的图形展示,用回归模型预测走势 注意:对聚类结果分析聚簇特征   对分类结果计算准确性。   使用时间序列分析方法可判断数据是否存在趋势、周期性等特征,或对数据进行预测。 (分类、聚类、时间序列,回归模型至少使用2种方法)
2023-12-15 14:41:58 3.36MB r语言 开发语言 数据挖掘 数据分析
为在大学生中倡导学习统计、应用统计的良好氛围,促进大学生关注经济社会热点难点问题,适应大数据时代下高校及统计部门对统计人才的培养要求,中国统计教育学会、全国应用统计专业学位研究生教育指导委员会联合举办2021年(第七届)全国大学生统计建模大赛,本届大赛主题为“数据新动能的统计测度研究”,旨在提高大学生数据挖掘、数据分析、运用统计方法及计算机技术处理数据的能力,加强创新思维意识,助力推进统计现代化改革。经过一年的筹备、征集和筛选评议工作,最终选出这26篇优秀论文集结成册,展示当代大学生的统计应用能力和研究水平。 欢迎扫描以上二维码订阅 扫一扫在手机打开 上一篇: 《2022年(第八届)... 下一篇: 关于公布2022年(第... 评论262 0/150 提交 热门评论 相关推荐 关于公布2023年(第九届)全国大学生统计建模大赛报名信息的通知 大赛动态 2023-04-10 10:00595451143 《2023年(第九届)全国大学生统计建模大赛主题解读》(视频) 大赛动态 2023-04-06 09:0046299990 “全国大学生统计建模大赛”成功入
2023-09-29 15:30:40 407.37MB 大数据 k12 数据挖掘 数据分析
1