只为小站
首页
域名查询
文件下载
登录
单目相机标定,和角点检测
单目相机标定和角点检测是计算机视觉领域中至关重要的技术。在机器视觉系统中,相机标定是获取相机内部参数和外部参数的过程,这对于后续的图像处理、三维重建等任务至关重要。单目相机标定主要利用世界坐标系下的已知点和这些点在图像坐标系下的对应投影来求解相机的内部参数,如焦距、主点坐标、畸变系数等。 角点检测是计算机视觉中的一个基础问题,角点可以被理解为在图像中具有两个主曲率极大值的点。在图像处理中,角点具有良好的定位精度和较高的独特性,因此常被用于特征匹配、图像配准、目标跟踪等领域。角点检测算法的目的是找到图像中这些具有几何意义的关键点。 在进行单目相机标定时,标定板(如棋盘格或圆点阵列)通常被使用,因为它们具有易于识别的几何结构。标定板在不同的位置和方向下被拍摄,通过检测图像中的角点与实际物理坐标的对应关系,可以计算出相机的内参和外参。标定过程需要精确测量和高级算法来减少误差,以提高标定的精度和鲁棒性。 角点检测算法有很多,包括传统的基于图像梯度的方法(如Harris角点检测算法)和基于学习的方法(如SIFT、SURF、ORB等)。这些算法在性能上各有优劣,传统算法在计算上相对简单快速,而基于学习的方法在抗噪声和尺度变换方面表现更优,但计算量更大。 在实际应用中,单目相机标定和角点检测常结合使用,尤其是在场景重建、增强现实、机器人导航等领域。标定获得的相机参数可用于校正图像中的畸变,提高后续处理的准确性。而角点检测则提供图像中的特征点,用于后续的匹配和识别任务。 对于单目相机标定和角点检测的研究和应用,目前依然十分活跃。一方面,人们不断改进算法,提高标定和检测的准确度和速度;另一方面,随着深度学习的发展,越来越多的基于深度学习的方法被提出,它们在特定场景下表现出色,但同样也面临着数据量大、训练周期长、计算资源消耗高等挑战。 总结起来,单目相机标定和角点检测是计算机视觉领域的基础和核心内容,是实现精准视觉感知和智能分析的关键技术。随着技术的不断进步,这些方法将在自动驾驶、机器人视觉、工业检测等众多领域发挥更加重要的作用。
2025-10-09 18:02:59
74.77MB
相机标定
1
相机定位原理标定方法介绍(重要知识备份)
相机定位原理是计算机视觉领域中的核心内容,它涉及到如何通过摄像头获取图像并解析出物体在三维空间中的位置信息。在工业自动化、机器人导航、自动驾驶等多个领域都有广泛应用。在这个主题下,我们将深入探讨相机定位的基本原理、标定方法以及Halcon等机器视觉软件的相关应用。 相机定位的基础是几何光学原理,主要包括投影几何和逆投影。当光线通过镜头在传感器上形成图像时,物点和像点之间的关系可以通过摄像机内参和外参来描述。内参通常包括焦距、主点坐标等,外参则涉及相机在世界坐标系中的位置和姿态。 相机标定是确定这些参数的过程,常用的方法有张正旭法和单应性矩阵法。张正旭法基于多个已知坐标点的图像对应点,通过最小化误差来求解内参和外参。单应性矩阵法则利用平面物体的二维投影特性进行标定。这两种方法都需要多视角下的标定点图像,通过算法优化得到精确的参数。 Halcon是一种强大的机器视觉软件,提供了一系列的相机标定工具和算法。例如,`OKR.hdev`可能是Halcon的在线标定(Online Calibration)模块,该模块允许用户在实际应用环境中实时调整相机参数。`变形.hdev`可能涉及的是相机的畸变校正功能,因为实际拍摄过程中,镜头往往会产生径向和切向畸变,校正后能提高定位的准确性。 视频资源`定位标定原理.mp4`和`定位标定原理2.mp4`很可能是对相机定位标定过程的可视化教程,包括标定板的设计、图像采集、标定过程及结果评估等步骤。观看这些视频可以更直观地理解理论知识。 `相机引导 贴合组装定位 归纳总结.pptx`可能是一个综合性的总结材料,涵盖了相机引导装配、贴合过程中的定位技术。在制造业中,相机定位常用于精密装配,确保零部件准确无误地对齐和结合。 相机定位原理和标定方法是机器视觉和自动化领域的关键技术。掌握这些知识,不仅可以帮助我们理解相机如何捕捉和解析世界,还能在实际项目中实现高精度的定位任务,提高生产效率和产品质量。Halcon等专业软件的使用,则使得这一过程更加便捷和高效。通过学习和实践,我们可以深入理解和应用这些知识,推动相关技术的发展。
2025-09-23 09:44:30
521.81MB
halcon
1
新的单目视觉系统两步手眼标定方法
为了实现单目视觉系统的快速、精确的手眼标定, 本文提出了一种新的两步式手眼标定方法, 将手眼标定分为求解旋转关系和平移关系两步. 首先机器人携带标定板进行两次平移运动求解旋转关系, 然后机器人工具坐标系执行若干次旋转运动求解平移关系. 该方法简单快速, 不需要昂贵的外部设备, 通过实验最终验证了该方法的可行性.
2025-09-22 16:53:28
1.48MB
机器视觉
工业机器人
1
VINS系列前篇(2)-D435i标定IMU
VINS系列前篇(2)-D435i标定IMU 在现代机器人学和计算机视觉领域,视觉惯性导航系统(VINS)是一种广泛应用于各种无人系统的导航技术。它将摄像头捕获的视觉信息和惯性测量单元(IMU)提供的数据相结合,以估计和校正无人系统的运动和位置。IMU传感器由于其高频率的数据输出和能在复杂环境下可靠工作的能力,是实现精确定位的关键硬件组件。然而,IMU在制造和安装过程中会存在系统误差,这些误差如果不进行校正,将导致导航系统的累积性误差,进而影响到整个系统的性能。 针对这一问题,D435i作为Intel Realsense系列的深度摄像头之一,它集成了IMU传感器,并提供了一套完整的开发工具包和SDK(软件开发工具包),以便开发者可以轻松地进行IMU标定。IMU标定的目的是为了获取IMU传感器的固有参数,并识别其在实际使用中可能存在的偏差和误差。通过精确标定,可以提高视觉惯性导航系统的性能,减少位置和运动估计的误差,提升无人系统的导航精度。 进行IMU标定通常涉及以下几个步骤:需要准备一系列精确的工具和设备,如转台、量块、标准参考设备等,这些设备用于产生可重复的运动,为IMU提供稳定的校准参照。在标定过程中,需要收集IMU在不同运动状态下的数据,包括加速度计和陀螺仪的输出。接着,使用数学模型和算法来分析数据,估计IMU的误差参数。这些参数包括加速度计和陀螺仪的偏置、尺度因子误差、非正交误差以及安装误差等。一旦这些参数被识别出来,就可以进行相应的误差补偿,将这些参数纳入到导航系统的解算过程中。 IMU标定是一个需要专业知识和精密设备的过程,但是通过有效的标定,可以显著提高VINS系统的性能和可靠性。IMU标定的精度直接关系到导航系统的准确性,因此,对于需要高精度导航的应用场景,如无人驾驶汽车、无人飞行器、机器人定位等,IMU标定显得尤为重要。 此外,IMU标定技术不仅限于D435i这样的深度摄像头,它同样适用于其他各种类型的IMU传感器。在实际应用中,标定工作可能需要根据具体的使用环境和精度要求来进行调整和优化。尽管标定过程可能复杂和耗时,但其对于提升系统性能的贡献是巨大的。 在对IMU进行标定的过程中,还应注意到一些常见的挑战和注意事项。例如,环境温度变化可能会对IMU的性能产生影响,需要在不同的温度条件下进行多次标定以确保结果的准确性。此外,长时间运行后,IMU的参数可能会发生漂移,因此定期重新标定也是保持系统长期稳定运行的关键。对于特定应用,还需要根据实际的动态性能需求来设计标定方案,例如,对于高速运动的物体,标定方案需要能够适应快速变化的环境。 随着技术的不断进步,IMU标定的方法也在不断地发展和优化。通过采用先进的算法和计算工具,我们可以期待更加快速、更加精确的标定方法。这对于推动无人系统技术的发展具有重要的意义。 IMU标定是确保视觉惯性导航系统高精度工作的关键步骤。通过精确标定,可以最大限度地消除IMU误差,提高系统对无人系统运动状态的准确估计。随着无人系统技术的发展和应用领域的扩展,IMU标定技术将继续发挥其不可替代的重要作用。
2025-09-18 17:45:39
4.14MB
VINS
1
python四点法标定机械臂TCP工具坐标系
在工业机器人领域,精确地标定机械臂末端执行器(也被称为工具中心点,TCP)的坐标系对于保证机械臂动作的精度至关重要。使用Python进行四点法标定是一种有效的标定手段,它能够通过四个不共线的标定点来确定工具坐标系与机械臂坐标系之间的转换关系。 四点法标定的过程通常涉及以下几个核心步骤:首先是准备四个位于机械臂运动范围内的特定空间位置点,这些点应易于识别,并且能够在机械臂坐标系下准确描述。接着,机械臂会依次移动到这些点,并记录下每个点的实际末端执行器位置与预期位置之间的误差。然后,通过一系列数学计算,包括求解线性方程组和应用最小二乘法,从这些误差中推导出从工具坐标系到机械臂坐标系的转换矩阵。这个转换矩阵包括了平移向量和旋转矩阵,能够完整地描述两个坐标系之间的相对位置和方向。 在Python中实现四点法标定,需要利用到一些科学计算库,例如NumPy或SciPy,它们提供了矩阵运算和数值优化等工具。此外,通常还需要操作机械臂的控制软件或硬件接口,以便能够控制机械臂移动到指定位置,并获取末端执行器的位置信息。 值得注意的是,四点法标定的准确性不仅取决于所使用的数学算法,还受到机械臂运动精度、空间定位精度以及标定点选取的合理性等多种因素的影响。为了提高标定的精度,通常还需要在实际标定前做好机械臂的校准工作,并在标定过程中控制外部干扰因素。 四点法标定完成后,得到的转换矩阵将被应用于机械臂的控制系统中,以确保机械臂在后续的操作过程中能够准确地将坐标系中的位置点映射到工具坐标系上。这样一来,无论是在装配、搬运还是其他需要高精度定位的应用场景中,机械臂都能够高效且精确地完成任务。 对于新手而言,进行四点法标定可能略显复杂,因此需要对Python编程、机器人学以及机械臂的操作有一定的了解。通过实际操作和理论学习的结合,逐步掌握四点法标定的技巧,并在实践中不断完善和优化标定流程和精度,是提高机械臂应用能力的重要途径。 此外,由于实际应用中机械臂工作环境的多样性和复杂性,有时标定过程也需要根据实际情况进行适当的调整和创新,以适应各种不同的需求和挑战。 Python四点法标定机械臂TCP工具坐标系是机器人标定领域中一个重要的环节,它通过精确的数学计算和有效的标定流程,帮助确保机械臂操作的高精度和高效性。掌握这一技能对于工业机器人操作人员来说,是一项非常有价值的技能。
2025-09-15 11:26:30
2KB
python
工业机器人
机器人标定
1
xcpccp标定协议栈源码:量产项目集成Demo工程,支持Canape和INCA标定工具 CAN通信
内容概要:本文详细介绍了XCP/CCP标定协议栈的源码及其在多个微控制器(如S32系列和Tc系列)上的集成方法。文中提供了具体的代码示例,展示了如何进行硬件抽象层的配置、标定信号的映射以及动态DAQ配置。此外,还分享了在不同平台上移植的经验和注意事项,强调了集成Demo工程的便捷性和实用性。 适合人群:从事嵌入式系统开发的技术人员,尤其是那些需要进行数据观测与标定工作的工程师。 使用场景及目标:帮助开发者快速将XCP/CCP协议栈集成到新的项目中,减少开发时间和复杂度,提高工作效率。同时,为后续优化和扩展(如云端同步)打下基础。 其他说明:文中提到的源码可以在Git仓库的xcp_integration_template分支获取,建议关注不同平台的HAL层实现差异。
2025-09-12 09:55:44
966KB
1
XCP/CCP标定协议栈源码在量产项目中的集成与优化
内容概要:本文详细介绍了XCP/CCP标定协议栈源码在多个量产项目中的应用。该源码提供了集成Demo工程,支持Canape与INCA标定工具,适用于S32k144、S32k3、Tc397等多个硬件平台。文中展示了关键代码片段,涵盖数据处理、命令分发、内存布局、传输层实现等方面的技术细节。此外,还分享了一些调试技巧和移植经验,强调了协议栈在提高工作效率和跨平台兼容性方面的优势。 适合人群:从事嵌入式系统开发,尤其是车载标定项目的工程师和技术人员。 使用场景及目标:① 快速集成XCP/CCP协议栈到量产项目中;② 提升标定工具(如Canape、INCA)的操作效率;③ 实现跨平台移植,确保协议栈在不同硬件平台上的稳定性。 其他说明:文中提到的具体代码实现和调试技巧有助于开发者更好地理解和应用XCP/CCP协议栈,从而提高开发效率和产品质量。
2025-09-12 09:53:28
513KB
1
汽车工程领域INCA标定工具:高效生成A2L文件的双功能软件及其应用
内容概要:本文介绍了用于汽车生产的INCA标定工具以及与其配套的A2L文件生成工具。文中详细描述了A2L文件在标定中的重要作用,特别是支持CCP和XCP两种标定协议的功能特性。该工具不仅能够快速生成高质量的A2L文件,还支持多种文件格式的导入和导出,极大地方便了数据处理和分析。此外,文章还提供了详细的使用说明和技术支持渠道,确保用户在遇到问题时能及时获得帮助。最后,作者分享了自己作为技术爱好者的使用心得和个人见解,使读者不仅能学到实用技能,还能从中获得启发。 适合人群:从事汽车工程领域的技术人员,尤其是那些需要进行ECU标定工作的工程师。 使用场景及目标:①帮助工程师们更好地理解和掌握INCA标定工具的使用方法;②提高A2L文件生成效率,优化标定流程;③解决在实际工作中可能遇到的问题,如文件格式不匹配等。 其他说明:文章中提到的技术博客随笔部分展示了作者的独特视角和个性化表达,使得内容更加生动有趣。同时,提供的示例代码有助于加深读者的理解和实际操作能力。
2025-09-03 14:06:18
239KB
1
Halcon学习资料,包括Blob分析,标定与精确测量,定位方法等
Halcon是一种强大的机器视觉软件,广泛应用于工业自动化、质量检测等领域。这份学习资料包涵盖了Halcon的核心技术,包括Blob分析、标定与精确测量以及多种定位方法,对于想要深入理解和应用Halcon的人来说是非常宝贵的资源。 Blob分析是图像处理中的一个关键步骤,全称为大对象分析。在Halcon中,Blob分析主要用于识别和分析图像中的连续像素区域,这些区域可能代表物体、特征或感兴趣的模式。Blob分析可以提供诸如面积、周长、形状因子、重心等特征,帮助系统判断和分类目标物体。例如,在生产线上检测产品缺陷时,Blob分析能有效地识别出不同形状和大小的产品。 标定是机器视觉中的基础过程,它涉及到将相机捕获的二维图像映射到实际的三维空间中。在Halcon中,标定通常包括相机内参标定和外参标定,前者确定相机内部的光学特性,后者关联相机坐标系与世界坐标系。通过标定,可以提高测量和定位的精度,消除镜头畸变,确保机器视觉系统的可靠运行。在4-HALCON_标定与精确测量.pdf中,你可能会学习到如何进行这些标定过程,以及如何利用标定结果进行高精度的测量任务。 精确测量是Halcon的重要功能之一,它能够对图像中的目标进行微米级别的尺寸测量。Halcon提供了多种测量工具,如线性测量、角度测量、圆测量等,可以适应不同形状和位置的物体。这些工具在质量控制、产品尺寸验证等场景中发挥着重要作用。 定位方法是Halcon的另一大亮点,软件提供了多种策略来寻找和定位图像中的目标。5-HALCON_各种定位方法.pdf和6-HALCON_三维定位方法.pdf将详细介绍这些方法,包括模板匹配、形状匹配、特征匹配等。模板匹配是基于已知模板在图像中搜索相似区域,形状匹配和特征匹配则依赖于物体的几何属性。三维定位则更进一步,不仅能在二维图像上定位,还能计算出目标在三维空间的位置,适用于复杂的自动化应用场景。 通过学习这些资料,你将能够掌握Halcon的基本操作,并能运用到实际的机器视觉项目中。无论是进行简单的Blob分析,还是进行复杂的三维定位,Halcon都能提供强大的算法支持,助你在图像处理领域游刃有余。通过深入理解和实践,你将能够利用Halcon解决各种视觉问题,提升生产效率和产品质量。
2025-08-16 21:25:12
13.56MB
图像处理
1
康耐视VisionPro带二维码(DM)坐标棋盘格标定板CAD图,PDF用A4纸打印即可使用
康耐视VisionPro带DM码坐标棋盘格标定板CAD图,棋盘格PDF打印即可使用。 内涵400*400尺寸,棋盘格【0.2、0.5、1.0、2.0、3.0、4.0、5.0mm】(毫米)等7种尺寸的DM棋盘格标定板CAD图, 另外包含不带DM码的棋盘格标定板4种,用A4纸打印可初步校正使用
2025-07-29 20:24:05
157.42MB
visionpro
机器视觉
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
多智能体的编队控制程序的补充(之前上传少了一个文件)
西安问题电缆-工程伦理案例分析.zip
知网情感词典(HOWNET)
基于LSTM模型的股票预测模型_python
芯片验证漫游指南以及源代码.zip
基于蒙特卡洛生成电动汽车充电负荷曲线程序
毕业设计:基于Python的网络爬虫及数据处理(智联招聘)
CNN卷积神经网络Matlab实现
ios无人直播 虚拟视频实用版 可以导入视频
MATLAB车牌识别系统
数字图像处理[冈萨雷斯]
《MIMO-OFDM无线通信技术及MATLAB实现》高清PDF及源代码
stm32f103+OLED12864+FFT音乐频谱(多种显示效果 提供原理图)
通过svm cnn knn对高光谱数据集PaviaU进行分类(matlab)
matpower5.0b1.zip
最新下载
AD9102原理图+控制程序.rar
宝捷信PS860AM注塑机电脑使用电子说明书
163信箱批量回复邮件
pyidf:用于读取,修改和创建EnergyPlus IDF文件的Python库-源码
VMware ESXI 8.0镜像安装包
米联客 MA703FA-100T FPGA 开发板硬件资料
mcu-gif:适用于MCU的GIF解码器-源码
VideoDownloadHelper去除120分钟时间限制-高级版.zip
FTDI usb转232串口线驱动.zip
ACDSee 5.0.1 超完美修正WIN10 X64无法启动ACDSEE数据库提示.zip
其他资源
奈曼皮尔逊准则matlab仿真
node-v14.15.4-安装包.zip
The Shellcoder's Handbook PDF中文版
时频脊线提取
报价管理系统
基于佐普里兹方程的诺特曲线图
Lc-3编辑器源代码
ARM-Linux移植MT7601U USB无线网卡
winForm模版 风格界面
2017数学建模国赛优秀论文
字体管家 font_v5.4_setup.rar
DATA_SHEET_OTM1284A_V0.2_眾毅電子.pdf
人脸识别demo
libsqlite.zip
适用于D-LINK DIR-605 B1/B1G型号的DDWRT固件
SpringMVC+Spring+mybatis+Mysql 客户关系管理系统 可用于毕业设计
Access_JDBC.jar
海利普门机变频器调试手册
大鱼吃小鱼代码Java
VCA821运放手册(英文版)
精美时钟(VC++6.0源代码)