内容概要:本文围绕基于最优控制理论的固定翼飞机着陆控制器设计展开研究,重点利用Matlab实现相关算法仿真。研究结合最优控制方法,对固定翼飞机在着陆过程中的动力学特性进行建模与控制策略设计,旨在提高着陆精度与飞行安全性。文中详细阐述了控制器的设计流程,包括系统建模、性能指标构建、约束条件处理以及优化求解过程,并通过Matlab代码实现仿真验证,展示了控制器在实际飞行场景中的有效性与鲁棒性。此外,文档还列举了多个相关科研方向和技术应用实例,涵盖无人机控制、模型预测控制(MPC)、非线性控制、路径规划、信号处理等多个【固定翼飞机】基于最优控制的固定翼飞机着陆控制器设计研究(Matlab代码实现)领域,体现出较强的工程实践与科研参考价值。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的航空航天工程、自动化、控制科学与工程等专业的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于学习和掌握最优控制在飞行器着陆控制中的应用;②为开展类似航空器控制系统设计提供算法实现与仿真范例;③辅助科研项目开发,提升控制算法设计与仿真能力; 阅读建议:建议读者结合Matlab代码与理论推导同步学习,重点关注控制器设计逻辑与仿真结果分析,同时可参考文中提供的其他研究案例拓展技术视野。
2025-11-04 10:03:59 71KB 最优控制 Matlab代码实现
1
内容概要:本文探讨了匝道合流控制的序列优化及其控制算法,主要涉及三种不同控制场景的对比研究。首先是无控制场景,即不干预车辆合流,完全依赖SUMO自带算法;其次是先入先出(FIFO)加哈密顿最优控制,按到达顺序管理车辆并用哈密顿算法优化控制信号;最后是蒙特卡洛优化加哈密顿最优控制,利用蒙特卡洛算法优化车辆合流序列再施加哈密顿控制。文中提供了每种情况的具体代码示例,便于理解和实践。 适合人群:交通工程专业学生、智能交通系统研究人员以及对交通流量优化感兴趣的开发者。 使用场景及目标:适用于城市交通规划部门、智能交通系统的设计与实施团队,旨在提高匝道合流效率,减少交通拥堵,提升道路通行能力。 其他说明:虽然文档中有详细的代码示例,但缺少用于数据可视化的绘图程序,因此使用者需要自行补充这部分内容以便更好地展示实验结果。
2025-11-02 19:58:42 1.35MB
1
在分析线性二次型最优控制(LQG,Linear Quadratic Gaussian)在二级倒立摆控制系统的应用时,我们可以将整个研究分为几个重要部分:实验背景、实验内容、建模过程、控制策略设计、以及实验结果与分析。 实验背景部分介绍了倒立摆系统的不稳定性、多变量和非线性特征,以及其在不同领域中的重要应用。由于倒立摆系统的参数不确定性和外部干扰的不确定性,控制策略的设计和优化具有相当的挑战性。同时,报告中也指出了现有研究在快速性和稳定性方面的不足,以及倒立摆系统控制研究的成果方向,如模型建立和控制方法等。 接着,实验内容和建模过程部分,报告详细描述了倒立摆系统的建模方法,包括利用Lagrange方程来建立系统的动力学模型,并通过假设简化系统的复杂度。在建模过程中,通过选取合适的坐标系和定义系统的物理参数,如摆杆的质量和长度等,进而得出了系统的状态空间表示,这是应用现代控制理论进行系统分析与控制的基础。 在控制策略设计环节,报告重点介绍了线性二次型调节器(LQR)的设计。LQR控制策略是一种广泛应用于多变量系统的最优控制策略,其设计依据是最小化一个代价函数,该函数通常是系统状态与控制输入的二次型函数。通过设计LQR控制器,可以得到一种状态反馈的最优控制规律,以优化系统响应的速度和稳定性,实现二级倒立摆的最优控制。在这一部分,报告不仅介绍了理论基础,还详细说明了设计步骤和参数的确定方法。 实验结果与分析部分则展示了通过设计的LQR控制器对二级倒立摆系统进行控制的实验结果,以及对这些结果的详细分析。这部分内容对于评价控制策略的有效性和优劣至关重要,也是检验理论是否能够成功应用于实际系统的实验依据。通过对实验数据的分析,可以对控制策略进行调整和优化,以期达到更好的控制效果。 总结来看,本实验报告深入探讨了线性二次型最优控制在二级倒立摆控制系统的应用。报告从实验背景入手,分析了倒立摆系统的控制难点和现有研究的不足。通过建模和控制策略的设计,利用LQR理论,实现了对二级倒立摆系统的稳定控制。这一研究不仅对倒立摆控制系统的设计具有指导意义,也为类似高阶不稳定系统的最优控制提供了有价值的参考。
1
内容概要:本文探讨了基于模型预测控制(MPC)的燃料电池-动力电池混合动力汽车(FCHV)能量管理策略。研究对象为FCHV,重点在于在预测域内车速已知的情况下,构建最优控制问题并采用动态规划和PMP(庞加莱-莫尔森原理)求解方法,以获得最优的燃料电池输出功率。通过这两种方法,可以在不同车速和能源需求条件下,实现高效的能源分配,提升能源利用效率,延长续航里程,并减少排放。 适合人群:从事新能源汽车研究的技术人员、高校相关专业师生以及对混合动力汽车能量管理感兴趣的科研工作者。 使用场景及目标:适用于研究和开发燃料电池混合动力汽车能量管理系统,旨在提高车辆的能源利用效率和续航能力,同时减少环境污染。 其他说明:本文不仅介绍了具体的求解方法和技术细节,还对未来的研究方向进行了展望,强调了绿色出行和可持续发展的意义。
2025-08-25 21:36:29 177KB
1
基于最优控制算法的汽车1-4主动悬架系统仿真:Matlab&Simulink环境下LQR与H∞控制策略的实践与现成模型代码,基于最优控制的汽车1 4主动悬架系统仿真 Matlab&simulink仿真 分别用lqr和Hinf进行控制 现成模型和代码 ,关键词提取结果如下: 汽车主动悬架系统仿真;Matlab&simulink;LQR控制;Hinf控制;现成模型;代码。 以上关键词用分号分隔为:汽车主动悬架系统仿真;Matlab&simulink;LQR控制;Hinf控制;现成模型;代码。,"基于LQR与H∞控制的汽车1-4主动悬架系统Matlab/Simulink仿真及现成模型代码"
2025-04-22 00:38:37 70KB scss
1
变体飞行器是一种新型概念飞行器,能够在飞行中实时改变其气动外形,以适应不同的飞行环境和执行多种任务。这类飞行器通过改变其外形,如马赫数、高度、大气风场等,以及执行不同的飞行任务,比如巡航和攻击,来优化其空气动力学特性,从而保持最佳的飞行状态。 变体飞行器的变参数建模和鲁棒最优控制,是研究和设计这类飞行器的重要课题。由于变体飞行器在变形过程中,其气动参数、结构特性等都会发生变化,因此,传统的固定参数建模方法已经无法满足需要。变参数建模方法,如矢量力学建模、数学分析建模和多体建模等方法,可以更好地适应这类飞行器的特性。 在变体飞行器的建模过程中,描述变形与气动参数的关系是非常关键的一步。需要研究不同变形方式下的气动参数,并拟合出气动参数与变形方式之间的函数关系。然后,基于这些关系,建立变体飞行器的非线性动力学模型,该模型将包含弯度参数等关键变形参数。进一步,还需要建立飞行器的线性变参数模型,以分析变形过程中飞行器特性的变化。 变体飞行器的变形过程往往伴随着非线性特征,因此需要采用鲁棒最优控制的方法来设计控制器,以保证变形过程的稳定性和飞行性能。鲁棒最优控制是在考虑系统不确定性和外部干扰的情况下,设计出的性能最优的控制器。仿真结果显示,通过设计鲁棒最优控制器,可以有效保证变形过程的稳定性,并能显著改善飞行性能。 关键词“变体飞行器”、“变参数建模”、“鲁棒最优控制”和“变形稳定控制”涵盖了文章的核心内容。中图分类号V249.1则指出这篇文章的专业分类属于航空动力学和飞行控制技术领域。 引言中还提到了变体飞行器常见的变形方式,包括伸缩、折叠、变后掠等。这些变形方式直接关系到飞行器的空气动力学特性和飞行性能,因此是建立变体飞行器动力学模型的关键所在。 在建模过程中,由于变体飞行器具有复杂的变形结构和作动机械,传统的建模方法通常会比较复杂。矢量力学建模、数学分析建模和多体建模等方法各有特点,但均需针对变体飞行器的特殊结构进行适当调整和优化。 文章还提到了基于慢变系统理论的变形过渡过程的可控性。这意味着在一定变形速率范围内,变体飞行器的变形过渡过程是可以被控制和预测的。这对设计和实现鲁棒最优控制器具有重要的意义,因为这确保了控制器设计的可行性与有效性。 文章作者庄知龙和陆宇平分别来自南京航空航天大学自动化学院,他们在飞行控制技术领域有着深入的研究,并且发表了多篇相关领域的学术论文。庄知龙主要研究方向是飞行控制技术,而陆宇平教授的主要研究方向包括智能变体控制、网络化控制系统理论与应用、高超声速飞行控制等。
2025-04-09 17:38:39 228KB 首发论文
1
MIT科学家Dimitri P. Bertsekas在ASU开设了2023《强化学习》课程,讲述了强化学习一系列主题。Dimitri 的专著《强化学习与最优控制》,是一本探讨人工智能与最优控制的共同边界的著作。 在人工智能和机器学习领域,强化学习作为核心分支之一,吸引了大量研究者和工程师的关注。强化学习与最优控制的关系非常紧密,两者之间的交叉融合不断推动着智能决策与自动化控制技术的进步。MIT科学家Dimitri P. Bertsekas在亚利桑那州立大学(ASU)开设的2023年《强化学习》课程,不仅展示了他的教学风范,而且深入探讨了强化学习的基本理论与实践应用。 Bertsekas教授在其著作《强化学习与最优控制》中,系统地阐述了强化学习与最优控制的共同边界,即如何通过强化学习算法解决最优控制问题。最优控制问题通常关注如何在一个动态系统中,选择最优的控制策略来最大化系统的长期性能。强化学习,作为一种无需模型就能从环境中学习最优策略的方法,为解决这类问题提供了新的视角和工具。 书中可能涉及的关键概念包括马尔可夫决策过程(MDP)、策略评估、策略改进、价值函数、Q函数、策略迭代、值迭代等强化学习的核心算法。通过这些算法,学习者能够理解如何建立一个能够在未知环境中自主学习和决策的智能体。 同时,书中也可能涵盖了如何使用Python实现这些强化学习算法的实战指南。Python作为一种高效、简洁且易于阅读的编程语言,在机器学习领域被广泛应用。掌握使用Python进行强化学习开发,可以快速地构建原型并验证理论模型。 此外,结合现代优化技术,比如深度学习,这本书可能还会探讨如何利用深度强化学习(Deep Reinforcement Learning, DRL)来解决更加复杂和高维的控制问题。深度强化学习通过深度神经网络来逼近价值函数或策略,使得智能体能够处理图像、声音等高维数据,从而在诸如游戏、机器人控制、自动驾驶等领域展现出强大的应用潜力。 该书不仅适合于学术研究人员,同样也适合于工程技术人员。对于前者,书中提供的理论分析可以帮助他们深入理解强化学习的工作原理,对于后者,书中的实际案例和编程指导则能够帮助他们将理论知识应用于实际问题中。通过学习Bertsekas教授的著作,读者可以获得一系列解决复杂最优控制问题的工具和方法,为相关领域的发展做出贡献。 《强化学习与最优控制》一书作为强化学习领域的重要文献,为读者提供了一个全面了解和掌握强化学习及其在最优控制领域应用的平台。它不仅强调了理论的深度,也展现了实用的技术,是一本非常值得推荐给相关领域研究者和工程师的重要参考书籍。
2025-04-07 22:39:36 18.85MB python
1
基于状态反馈线性化的单相全桥逆变器的最优控制pdf,
2024-06-17 16:47:13 1.36MB 开关电源
1
X型涡扇发动机过渡态寻优控制
2024-05-21 19:03:11 2.85MB 寻优控制
1
这是作者花了很多心血编译并封装的高斯伪谱算法等一系列最优控制算法的封装库,可以求解各种轨迹优化问题。项目主要基于Lpopc进行封装,并提供了visual studio demo项目供学习。通过ElegantGP(该库名称),您可以构建各种复杂最优控制问题并求解。它所依赖的arma和MKL我也都打包在了这个库中,您无需为依赖问题而烦恼。C++求解高斯伪谱算法,从现在开始将不再困难!
2024-05-16 18:01:59 431.14MB 最优控制 轨迹优化