代码转载自:https://pan.quark.cn/s/54a184f55950 帧差技术作为在计算机视觉和图像处理学科中常见的一种运动目标检测与跟踪手段,特别是在视频分析方面表现出色,得到了广泛的应用。 在MATLAB平台中,我们可以借助其功能完备的图像处理工具箱来执行此方法。 名为"基于帧差技术对视频内行人进行检测与跟踪matlab.zip"的项目提供了具体的实现案例,其中涉及"mingling.txt"和"zhenchafaxingrenjiace"两个文档,或许分别存储了代码说明和算法的详细阐述。 帧差技术的核心思想在于通过对比连续两帧图像间的差异来辨识移动物体。 当图像中的像素随时间产生变动时,这些变动会在帧差图像上有所体现,一般以亮度的急剧变化呈现。 下面是对这一流程的详尽描述:1. **初始设置**:我们首先需要载入视频文件,并获取连续的两帧图像。 MATLAB的`VideoReader`函数能够便捷地读取和处理视频数据。 2. **帧间差异计算**:随后,执行两帧之间的差值运算,通常运用减法操作。 这将使得运动区域的像素值与背景形成明显对比。 差分后的图像往往带有噪声,因此可能需进行平滑处理,例如采用高斯滤波器。 3. **设定阈值**:利用适宜的阈值来区分运动区域(高灰度值)和背景(低灰度值)。 这可以通过全局阈值或自适应阈值的方式完成,MATLAB的`imbinarize`函数即可胜任此项工作。 4. **执行形态学操作**:为了减少噪声并合并分离的物体区域,可以进行形态学操作,如膨胀、腐蚀、开闭运算等。 MATLAB的`imopen`、`imerode`、`imdilate`和`imclose`函数是常用的工具。 5. **物体识别**:通过连接操作,可以识别出连...
2026-01-15 14:16:27 270B
1
内容概要:本文介绍了如何利用YOLOv8机器视觉算法实现实时车辆检测和跟踪,并将其结果实时联动到SUMO仿真器中生成仿真车辆的方法。首先,通过摄像头获取道路交通图像并用YOLOv8算法进行特征提取和目标检测,然后采用卡尔曼滤波等算法对车辆进行实时跟踪,最后将检测结果传输到SUMO仿真器中生成仿真车辆。实验结果显示,这种方法能有效提升智能交通系统的性能。 适合人群:从事智能交通系统研究的技术人员、研究人员和高校相关专业的学生。 使用场景及目标:适用于需要对车辆进行实时监控和模拟的城市交通管理项目,旨在提高交通流量管理和事故预防的能力。 其他说明:文中还讨论了未来可能的研究方向,如提高算法准确性、扩展应用场景等。
2025-11-20 15:43:54 150KB 机器视觉 车辆检测 实时跟踪
1
内容概要:本文详细介绍了一个基于YOLOv8和DEEPSort的多目标检测跟踪系统。该系统使用VisDrone数据集进行训练和测试,包含56组测试视频,涵盖了行人和车辆等多种目标类型。系统采用PyQt5设计图形用户界面,提供了详细的环境部署说明和算法原理介绍。主要内容包括:数据集配置、YOLOv8模型加载与检测框格式转换、DeepSORT追踪模块初始化及其参数设置、PyQt5界面设计与线程管理以及环境部署的最佳实践。此外,还讨论了系统的性能优化方法,如将检测帧率限制在15fps以确保实时处理能力。 适合人群:对计算机视觉、深度学习和多目标跟踪感兴趣的开发者和技术研究人员。 使用场景及目标:适用于需要构建高效多目标检测和跟踪系统的应用场景,如智能交通监控、安防监控等领域。目标是帮助用户快速搭建并理解多目标检测跟踪系统的工作原理,同时提供实用的操作指导。 其他说明:文中提到的系统在VisDrone数据集的商场场景测试视频中表现出色,能够达到28fps的速度,并显著减少ID切换次数。然而,在极端遮挡情况下仍存在一些挑战,未来可以通过引入后处理模块进一步改进。
2025-10-27 14:02:29 1.13MB
1
基于FPGA的运动目标检测跟踪系统:从顶层设计到模块实现的全流程实践(进阶版结合XY轴舵机控制),基于FPGA的运动目标检测跟踪系统项目 ,FPGA项目,FPGA图像处理 FPGA项目 采用帧间差分法作为核心算法,该项目涉及图像采集,颜色空间转,帧间差分核心算法,腐蚀等形态学处理,目标定位,目标标识,图像显示等模块。 通过该项目可以学习到以下两方面内容 1.FPGA顶层架构设计、各功能模块详细设计、模块间接口设计; 2.各模块的RTL编写与仿真,在线逻辑分析,程序调试等。 本项目提供完整项目源程序,仿真程序,在线逻辑分析,以及讲解等 ***另有结合XY两轴舵机控制的进阶版本,详细信息欢迎咨询*** 涉及整个项目流程的完整实现,适合于FPGA学习者,对于提高FPGA设计能力有很大的帮助。 非诚勿扰 主页还有更多有关FPGA图像处理算法实现的项目,欢迎咨询。 其中包括: 1.颜色空间转 2.快速中值滤波算法 3.sobel边缘检测算法 4.OTSU(最大类间方差)算法 5.卡尔曼滤波算法 6.局部自适应分割算法 7.目标检测与跟踪算法 8.图像增强去雾算法 #FPGA #图像处理 #
2025-05-08 21:18:30 3.05MB
1
基于YOLOv8与DEEPSort技术的多目标检测跟踪系统:包含56组visdrone测试视频、pyqt5界面设计与详细环境部署及算法原理介绍,基于YOLOv8和DEEPSort的多目标检测跟踪系统:深入探索环境部署与算法原理,附带56组visdrone测试视频的界面设计实战教程。,五、基于YOLOv8和DEEPSort的多目标检测跟踪系统 1.带56组测试视频,使用visdrone数据集。 2.pyqt5设计的界面。 3.提供详细的环境部署说明和算法原理介绍。 ,基于YOLOv8;DEEPSort多目标检测跟踪系统;56组测试视频;visdrone数据集;pyqt5界面设计;环境部署说明;算法原理介绍,基于YOLOv8和DEEPSort的56组视频多目标检测跟踪系统
2025-04-13 14:25:06 3.27MB
1
深度学习驱动的复杂环境下人员异常行为精准检测系统:多目标检测跟踪实现摔倒、越线、徘徊、拥挤检测 - 基于YoloV3+DeepSort在TensorFlow框架下的应用,基于深度学习的人员异常行为检测系统:多目标检测与跟踪实现摔倒、越线、徘徊及拥挤检测——Yolov3+DeepSort在TensorFlow框架下的应用。,人员异常行为检测 基于深度学习的人员异常行为检测,多目标检测+多目标跟踪实现人员摔倒检测,越线检测,徘徊检测,拥挤检测,yolov3+deepsort,tensorflow ,核心关键词:深度学习;人员异常行为检测;多目标检测;多目标跟踪;摔倒检测;越线检测;徘徊检测;拥挤检测;Yolov3;DeepSort;TensorFlow;,深度学习多目标检测跟踪:摔倒、越线、徘徊、拥挤行为检测
2025-04-09 00:49:24 6.48MB csrf
1
OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 车辆检测器 这是一个交通监控系统的项目。 使用OpenCV和YOLOv8实现如下功能,实时车辆检测、车辆跟踪、实时车速检测,以及检测车辆是否超速。 跟踪代码如下,赋予每个目标唯一ID,避免重复计算。 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆检测跟踪 OpenCV和YOLOv8实时车速检测+车辆
2024-07-02 21:10:40 87.91MB opencv 深度学习 计算机视觉 车辆检测
1
matlab_检测前跟踪(TBD),通过多帧回波数据积 累和联合处理,可以显著提高雷达的微弱目标检测跟踪性能
2024-06-19 18:02:19 55KB matlab 检测前跟踪
目标跟踪和碰撞时间估计 这是Udacity传感器融合纳米度的第二个项目。 我融合了来自KITTI数据集的相机和LiDAR测量值,以检测,跟踪3D空间中的物体并估算碰撞时间。 首先,我用YOLOv3处理图像以检测和分类对象。 下图显示了结果。 基于YOLOv3发现的边界框,我开发了一种通过关键点对应关系随时间跟踪3D对象的方法。 接下来,我使用了两种不同的方法来计算碰撞时间(TTC),分别是基于LiDAR和基于相机的TTC。 环境的结构由主要讲师Andreas Haja构建。 基于LiDAR的TTC 我通过使用齐次坐标将前车的3D LiDAR点投影到2D图像平面中。 投影如下图所示。接下来,我将3D LiDAR点分布到相应的边界框。 最后,我根据不同帧的对应边界框中最接近的3D LiDAR点计算了TTC。 基于摄像头的TTC 我使用检测器/描述符的各种组合来找到每个图像中的关键点,并在
2023-05-18 00:00:59 132.97MB C++
1
基于opencv的车辆检测与跟踪,附详细源代码,已打包好可直接编译运行
2023-04-09 21:59:27 39KB 车辆 检测 跟踪
1