内容概要:本文档是针对本科生早中期数理基础复习的详细指南,涵盖《线性代数》《高等数学》《概率论与数理统计》三个科目。主要内容包括线性代数中的行列式、矩阵、向量、特征值与特征向量、二次型;高等数学中的极限、可导可微可积、微分中值定理、泰勒与傅里叶展开以及向量场理论;概率论部分讲述了随机事件、随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理等核心概念。 适合人群:准备保研或考研的学生,特别是理工科专业需要扎实数学功底的人群,也适用于大学一年级到三年级的基础课程复习。 使用场景及目标:帮助考生系统梳理并深入理解数学中的关键理论和技术,巩固知识体系;提升解决复杂实际问题的能力;为接下来更高层次的学习打下坚实的理论基础。 其他说明:文档提供详细的证明步骤和实例解析,并附录了一些保研面试可能会遇到的问题解答。通过对本教材的学习,不仅有助于提高笔试成绩,还能增强综合素质评价环节的表现。
2025-09-13 19:00:27 4.28MB
1
"南京邮电大学通达学院概率统计与随机过程复习ppt" 概率统计是统计学的一个重要分支,它研究随机事件的概率分布和统计性质。在随机过程中,事件的发生是随机的,而概率统计就是研究这些随机事件的规律和统计特征。 随机过程是指一个随机事件序列,它具有随机性和不确定性。在随机过程中,我们可以研究事件的概率分布、均值函数、自相关函数等统计特征。 在本文中,我们将讨论随机过程的基本概念和性质,包括平稳过程、平稳的定义和判断方法,以及随机过程的均值函数和自相关函数的计算方法。 我们需要定义什么是随机过程。随机过程是一个随机事件序列,记为{Z(t), t ∈ T},其中Z(t)是一个随机变量,t ∈ T是一个时间点的集合。 在随机过程中,我们经常研究的统计特征有均值函数、自相关函数和谱密度函数。均值函数是指随机过程的数学期望,它是随机过程的一种统计特征。自相关函数是指随机过程中两个时间点之间的相关性,它是随机过程的另一种统计特征。 在本文中,我们将讨论随机过程的均值函数和自相关函数的计算方法。我们需要定义均值函数和自相关函数的计算公式。均值函数的计算公式为: E[Z(t)] = μ(t) 其中,E[ ]表示数学期望,Z(t)是随机变量,μ(t)是均值函数。 自相关函数的计算公式为: R(t, τ) = E[Z(t)Z(t + τ)] 其中,R(t, τ)是自相关函数,Z(t)和Z(t + τ)是随机变量,τ是时间差。 在随机过程中,我们还需要判断是否是平稳过程。平稳过程是指随机过程的统计特征不随时间改变的过程。在判断是否是平稳过程时,我们可以使用均值函数和自相关函数的计算结果。如果均值函数是常数,自相关函数只与时间差有关,那么该随机过程就是平稳过程。 例如,在一个随机过程中,我们可以计算均值函数和自相关函数。如果均值函数是常数,自相关函数只与时间差有关,那么该随机过程就是平稳过程。 在本文中,我们还讨论了马尔科夫链的概念和性质。马尔科夫链是一个特殊的随机过程,它具有马尔科夫性质。在马尔科夫链中,我们可以研究状态转移概率矩阵和相应的统计特征。 例如,在一个马尔科夫链中,我们可以计算状态转移概率矩阵和相应的统计特征。如果状态转移概率矩阵满足一定的条件,那么该马尔科夫链就是齐次马尔科夫链。 随机过程是统计学的一个重要分支,它研究随机事件的概率分布和统计性质。在本文中,我们讨论了随机过程的基本概念和性质,包括平稳过程、平稳的定义和判断方法,以及随机过程的均值函数和自相关函数的计算方法。
2025-09-02 09:50:39 1.3MB 概率统计
1
概率论与数理统计是统计学的基础,也是数据分析、机器学习等领域不可或缺的理论支撑。浙江大学作为国内顶尖高校,其在该领域的教学资源自然备受关注。这份"浙江大学 概率论与数理统计 ppt"很可能是该校教授或讲师精心制作的教学课件,旨在帮助学生深入理解和掌握这门学科的核心概念与方法。 概率论是研究随机现象的数学理论,它通过概率这一度量来描述事件发生的可能性。在PPT中,可能会包含以下知识点: 1. **概率的基本概念**:包括概率的定义、古典概率、几何概率、条件概率、独立事件等。 2. **概率的计算**:如加法定律(互斥事件)、乘法定律(独立事件)、全概率公式、贝叶斯公式等。 3. **随机变量**:离散随机变量与连续随机变量的概念,概率分布函数(PDF)和累积分布函数(CDF),常见分布如二项分布、泊松分布、均匀分布、正态分布等。 4. **期望与方差**:随机变量的数学期望(均值)、方差、标准差,以及它们的性质和计算。 5. **大数定律与中心极限定理**:这两个定理是概率论中的基石,解释了大量重复实验结果的稳定性,为统计推断提供了理论基础。 数理统计则主要涉及数据的收集、分析和解释,包括以下几个方面: 1. **抽样分布**:样本统计量(如样本均值、样本方差)的分布,如t分布、卡方分布、F分布。 2. **参数估计**:点估计(最可能的参数值,如矩估计、极大似然估计)与区间估计(置信区间的构造)。 3. **假设检验**:包括单样本检验(如均值、比例的检验)、双样本检验(独立样本、配对样本)以及卡方检验、F检验等。 4. **回归与相关分析**:线性回归模型、多元回归、残差分析,以及相关系数的理解和应用。 5. **方差分析**(ANOVA):用于比较多个组别的均值差异,包括单因素和多因素方差分析。 6. **非参数检验**:适用于数据分布未知或者分布不均匀的情况,如Mann-Whitney U检验、Kruskal-Wallis H检验。 7. **统计软件的应用**:如何利用Excel、R语言、SPSS等工具进行数据分析和可视化。 这份PPT应该会结合实际案例,通过图表和示例帮助学生直观地理解这些概念,并提供一些习题以巩固所学。对于希望深入学习概率论与数理统计的人来说,这是一个非常有价值的资源。
2025-08-29 14:28:42 3.61MB 浙江大学 概率论与数理统计 ppt
1
Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-07-29 10:57:16 2.8MB matlab
1
用于耿贝尔分布的包伟尔概率格纸-baoweier.m R.T 直接上程序,能的直接下载,或以下代码:x=[0.01 0.5 10 20 50 80 90 95 99 99.9];%设置横坐标数值 y=log/log);%横坐标转换 %画垂直于横坐标的线 for i=1:size     line,y],[0 8]);     hold on end z=0:8; %画垂直于纵坐标的线 for i=1:8; %8为纵坐标的格数,可以自已设置。     line],[z z]);     hold on end h=findobj; set],'ylim',[0 ,8]);%同时去掉x轴和y轴的刻度 %重设横坐标 set; set; %设置标题及横纵坐标名称 title; xlabel; ylabel;复制代码
2025-07-29 10:20:32 622B matlab
1
《考研数一概率论知识点(含例题、注释)手写笔记》是一份非常珍贵的学习资料,专为备考考研数学一的同学准备。这份笔记详细梳理了概率论的基础概念、重要定理和典型例题,同时也融入了作者的个人理解和体会,对于深化理解与记忆知识点大有裨益。下面我们将深入探讨这份笔记中可能涵盖的关键知识点。 1. **概率论基础**:笔记首先会介绍概率论的基本概念,如样本空间、事件、概率的定义及其性质。这部分内容是后续深入学习的基础,包括概率的加法定理、乘法定理以及条件概率等。 2. **随机变量**:随机变量是概率论的核心,笔记将详细阐述离散型和连续型随机变量的概念,以及它们的概率分布,比如二项分布、泊松分布、均匀分布、正态分布等。同时,还会讲解期望值、方差等随机变量的统计特性。 3. **多维随机变量**:在考研数一中,多维随机变量的联合分布、边缘分布和条件分布是重点。笔记可能会通过实例解释如何计算这些分布,并讨论独立性的概念。 4. **大数定律和中心极限定理**:这两个定理是概率论中的基石,对于理解和应用概率理论至关重要。大数定律揭示了独立同分布随机变量序列的平均趋于期望值的规律,而中心极限定理则说明了独立同分布随机变量和的分布趋近于正态分布。 5. **随机过程**:虽然考研数一对随机过程的要求不如对其他部分深,但笔记可能也会提及简单随机过程,如马尔可夫链,以及随机过程的一些基本概念。 6. **极限定理**:除了大数定律,笔记可能还会涉及切比雪夫不等式、伯努利定理等,这些都是概率论中的重要极限结果,对于理解和解决实际问题有重要作用。 7. **统计推断**:这部分可能涉及参数估计和假设检验,包括矩估计、最大似然估计以及t检验、卡方检验等常见统计方法。 8. **例题解析与体会**:笔记的亮点在于结合例题进行深入解析,这有助于考生掌握解题思路和技巧。作者的个人体会可以帮助考生避免常见错误,提升解题效率。 9. **解题策略**:笔记可能还包含了如何高效复习和应对考试的策略,如时间管理、答题技巧等,这对于考研备考至关重要。 通过这份详尽的手写笔记,考生可以系统地复习概率论的知识,理解并掌握每个知识点的实质,提高解题能力。同时,作者的注释和体会将使学习更加生动有趣,帮助考生在备考过程中少走弯路,更好地迎接考研挑战。
2025-07-25 15:48:47 38.68MB 手写笔记
1
本书通过强大的Python语言库PyMC,以及相关的Python工具,包括NumPy\SciPy\Matplotlib讲解了概率编程。通过本书介绍的方法,读者只需付出很少的努力,就能掌握有效的贝叶斯分析方法。
2025-07-24 19:07:45 24.7MB 贝叶斯 Python
1
本书基于PyMC语言以及一系列常用的Python数据分析框架,如NumPy、SciPy和Matplotlib,通过概率编程的方式,讲解了贝叶斯推断的原理和实现方法。该方法常常可以在避免引入大量数学分析的前提下,有效地解决问题。书中使用的案例往往是工作中遇到的实际问题,有趣并且实用。作者的阐述也尽量避免冗长的数学分析,而让读者可以动手解决一个个的具体问题。通过对本书的学习,读者可以对贝叶斯思维、概率编程有较为深入的了解,为将来从事机器学习、数据分析相关的工作打下基础。本书适用于机器学习、贝叶斯推断、概率编程等相关领域的从业者和爱好者,也适合普通开发人员了解贝叶斯统计而使用。
2025-07-20 10:57:24 34.45MB 贝叶斯
1
基于蒙特卡洛法的风光场景生成与概率距离快速削减方法仿真研究,MATLAB代码:基于概率距离快速削减法的风光场景生成与削减方法 关键词:风光场景生成 场景削减 概率距离削减法 蒙特卡洛法 仿真平台:MATLAB平台 主要内容:代码主要做的是风电、光伏以及电价场景不确定性模拟,首先由一组确定性的方案,通过蒙特卡洛算法,生成50种光伏场景,为了避免大规模光伏场景造成的计算困难问题,采用基于概率距离快速削减算法的场景削减法,将场景削减至5个,运行后直接给出削减后的场景以及生成的场景,并给出相应的概率 ,核心关键词:风光场景生成; 场景削减; 概率距离削减法; 蒙特卡洛法; 风电光伏模拟; 计算困难问题; 概率计算。,MATLAB: 风光场景模拟与削减方法,基于概率距离快速算法优化
2025-07-18 10:36:18 426KB csrf
1
## MS - Recitation - Homework - Lecture slides ## Prob-Stat - Why Probability and Statistics - R examples - Lecture slides
2025-07-12 16:32:13 69.47MB r语言
1