本文介绍了利用 C++ 和 OpenCV 对 YOLOv11-CLS 模型完成图像分类的具体方法,涵盖模型导入、数据预处理流程及推理操作,并提供了一份详尽的操作指南,其中包括数据增强、置信度调整等进阶应用技巧。本项目的目的是通过演示如何使用 C++ 和 OpenCV 构建一个高效的图像分类系统。 适合人群:有基本的 C++ 或机器学习背景的研究人员和技术工作者。 应用场景及目标:适用于需要高性能实时物体检测的各种应用环境中,例如无人车系统和安保摄像头等领域。使用者能够学习到模型选择、环境搭建以及优化技术的应用。 此外,为了改善模型表现和用户体验感,在今后的研发过程中还考虑集成更多的自定义功能选项。目前推荐用户严格按照文档提示来进行操作。
2025-05-07 16:54:11 41KB OpenCV 图像分类 模型部署
1
内容概要:本文详细介绍了利用C# WinForms构建的YOLOv11-OBB旋转框检测系统,通过ONNX格式模型进行有效的物体检测。除了详述系统实现的具体细节外,还分享了多个可能的发展和完善方面,涵盖了数据增广技术的应用以及用户交互的设计等特性。同时提供了完整的示例代码来辅助理解和开发过程。 适合人群:面向熟悉C#基本语法并希望深入学习机器视觉项目的软件开发者和技术团队成员。 使用场景及目标:①实现复杂的物体边界检测需求,并允许调整检测的敏感度与准确率之间的平衡;②在现有基础上探索新的技术革新和服务优化点。 其他说明:本文为那些寻求将现代计算机视觉技术嵌入到传统Winforms应用中去的技术爱好者或初学者,提供了一份良好的指导案例,同时也强调了后续研究的方向。
2025-04-11 14:46:30 39KB WinForms
1
【视频演示】 bilibili.com/video/BV1Se411v7oy/ 【博客地址】 blog.csdn.net/FL1623863129/article/details/135359963 【测试环境】 vs2019 net framework4.7.2 opencvsharp4.8.0
2024-06-14 14:47:51 241.85MB
C++部署YOLO模型
2024-06-05 17:06:59 21.87MB 模型部署
1
分享课程——ONNXRUNTIME计算机视觉模型部署与加速教程
2024-03-29 15:59:39 213B 计算机视觉 课程资源
1
分享课程——OpenVINO2022计算机视觉模型部署与加速课程,附源码+模型文件+思维导图。
2024-03-29 15:56:49 804B 计算机视觉 课程资源
1
YOLOv8使用TensorRT加速!首先是YOLOv8模型训练和导出:使用YOLOv8的训练代码和数据集进行模型训练。导出YOLOv8模型的权重文件和配置文件,以便后续在C++中加载和使用。安装TensorRT和相关依赖:下载并安装NVIDIA TensorRT,TensorRT是一个深度学习推理加速库。安装CUDA和CUDNN,确保与TensorRT版本兼容。安装OpenCV,用于图像处理和预处理。将YOLOv8模型转换为TensorRT格式:使用TensorRT提供的工具和API将YOLOv8模型从常规框架(如PyTorch或)转换为TensorRT格式。这涉及模型的序列化和优化,以便在TensorRT中进行高效的推理。 本栏目使用C++编写应用程序代码来加载TensorRT格式的YOLOv8模型并进行推理。使用TensorRT的C++ API,创建推理引擎并配置相关参数。进行图像预处理,如调整尺寸、归一化等操作。将预处后的图像输入到TensorRT引擎中进行目标检测推理。 解析和处理推理结果,包括目标框的提取、类别预测和置信度计算等。构建和编译: 使用适当的构建工具进行配置。
2024-01-05 20:55:22 751KB TensorRT
1
由于C++语言的运行优势,多数算法模型在实际应用时需要部署到C++环境下运行,以提高算法速度和稳定性 主要讲述WIn10下在VS工程中通过Opencv部署yolov5模型,步骤包括: 1.python环境下通过export.py导出.onnx模型 2.C++环境下通过opencv的DNN模块进行模型导入和调用 部署完成后的检测效果如下图所示(CPU下运行,无加速!) 适合刚开始转战C++的算法小白
2023-04-20 21:31:38 126MB 深度学习 目标检测 YOLO 计算机视觉
1
由于C++语言的运行优势,多数算法模型在实际应用时需要部署到C++环境下运行,以提高算法速度和稳定性 本文主要讲述WIn10下在VS工程中通过Opencv部署yolov5模型,步骤包括: 1.python环境下通过export.py导出.onnx模型 2.C++环境下通过tensorrt进行模型导入和调用,过程中实现int8量化加速 适合刚开始部署模型的小白或者研究者,内附教程
2023-04-20 20:52:45 9.62MB 目标检测 计算机视觉 YOLO 深度学习
1
利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行分类,模型蒸馏,一个完整的代码。 实现功能: 基础功能利用pytorch实现图像分类 包含带有warmup的cosine学习率调整 warmup的step学习率优调整 多模型融合预测,加权与投票融合 利用flask + redis实现模型云端api部署(tag v1) c++ libtorch的模型部署 使用tta测试时增强进行预测(tag v1) 添加label smooth的pytorch实现(标签平滑)(tag v1) 添加使用cnn提取特征,并使用SVM,RF,MLP,KNN等分类器进行分类(tag v1)。 可视化特征层。 转载:https://github.com/lxztju/pytorch_classification
2023-03-11 16:54:10 3.03MB 预测模型 图像分类 pytorch
1