图解英汉汽车技术词典图解英汉汽图解英汉汽车技术词典车技术词典
2025-12-08 13:20:09 12.99MB
1
新能源汽车动力电池作为汽车的动力源,其充电、放电的发热会一直存在。动力电池的性能和电池温度密切相关。为了尽可能延长动力电池的使用寿命并获得功率,需在规定温度范围内使用蓄电池。原则上在-40℃至+55℃范围内(实际电池温度)动力电池单元处于可运行状态。因此目前新能源的动力电池单元都装有冷却装置。动力电池冷却系统有空调循环冷却式、水冷式和风冷式。1.空调循环冷却式在高端电动汽车中动力电池内部有与空调系统连通的制冷剂循环回路。BMW X1 xDrive 25Le(F49 PHEV)插电式混动车型动力电池冷却系统如下图所示。动力电池单元直接通过冷却液进行冷却,冷却液循环回路与制冷剂循环回路通过冷却液制
2025-10-27 20:26:56 712KB
1
电动汽车高压上下电控制电路及系统研究 电动汽车的发展是可持续发展趋势下的一个重要方向,它能够减少环境污染、节能降耗和提高汽车的安全性。本文将对电动汽车高压上下电控制电路系统的操作实施进行研究和分析,以提高电动汽车的安全性和可靠性。 1. 电动汽车系统及控制原理 电动汽车系统主要包括高压上下电控制系统、电池管理系统、电机控制器和车辆控制器等组成部分。其中,高压上下电控制系统是电动汽车的核心系统,它包括电池、电机控制器、预充电阻、车辆控制器等硬件部分。软件部分主要包括整车控制器和电池管理系统的控制软件程序。 2. 系统控制原理 在无故障状态下,钥匙开关从 OFF 档到 ON 档的切换中,电池管理系统会将 s2 先闭合,然后再对 s6 闭合,此时会为充电机电容完成预充电,再将 s1 闭合,接着将 s6 断开,最终把控状态再次反馈到整车控制器。 3. 高压上下电控制逻辑实施 当 OFF 切换到 ON 档时,ON 档信号被整车控制器所采集,并判断其高电平是否有效,若有效,会由继电器供电给电池管理系统,而电池管理系统会进行自检,结合是否进行“强制断高压,将相应的故障信息发送到整车控制器,并对信息进行判断,当为无强制断高压故障状态时,会将上电指令发送给 BMS。 4. 高压上下电控电路系统的操作实施 电动汽车高压上下电控电路系统的操作实施主要包括高压上电控制逻辑实施和高压下电控制逻辑实施。高压上电控制逻辑实施是指当 OFF 切换到 ON 档时,电池管理系统会将 s2 先闭合,然后再对 s6 闭合,此时会为充电机电容完成预充电,再将 s1 闭合,接着将 s6 断开,最终把控状态再次反馈到整车控制器。高压下电控制逻辑实施是指当 START 档切换到 OFF 档时,整车控制器会闭合 s5,然后对高压部件完成预充电,再将 s3 闭合,对 DC/AC 使能进行输出,当将 s5 断开时,就完成了整 个上高压电流程操作。 电动汽车高压上下电控制电路系统的操作实施是电动汽车安全性的关键部分,它能够提高电动汽车的安全性和可靠性。但是,需要进行深入的研究和分析,以确保电动汽车高压上下电控制电路系统的安全性和可靠性。
1
车联网及周边开发必不可少的文件,包含如下文件: GBT 32960.1-2016-电动汽车远程服务与管理系统技术规范 第1部分:总则 GBT 32960.2-2016-电动汽车远程服务与管理系统技术规范 第2部分:车载终端 GBT 32960.3-2016-电动汽车远程服务与管理系统技术规范 第3部分:通讯协议及数据格式
2024-09-09 16:04:53 2.15MB 电动汽车 技术规范 协议规范
1
电动汽车逆变器是电动车辆动力系统的关键组成部分,其性能直接影响到电动汽车的效率和续航里程。逆变器的主要损耗来源于绝缘栅双极型晶体管(IGBT)和续流二级管。本文主要探讨了一种在不同功率因数角范围内计算这些元件功率损耗的新方法。 在逆变器的工作过程中,IGBT和续流二级管承担着电流的开关和续流功能。由于IGBT具有低驱动功率、高工作频率、大通态电流和小通态电阻等优点,成为了电力电子装置的首选器件。然而,这些器件在开关过程中会产生功率损耗,这不仅影响设备效率,还会导致发热问题,需要通过合理的散热设计来解决。 传统的IGBT功率损耗计算方法主要包括基于物理结构的损耗模型和基于数学方法的损耗模型。物理结构模型需要详细分析器件的物理特性,而数学模型则利用实验数据建立电流、电压与器件参数之间的数学关系,后者更为实用和通用。 本文提出了在空间电压矢量调制(SVPWM)7段调制模式下,针对不同功率因数角范围的IGBT和续流二级管导通功率损耗的计算公式。这种方法对已有的计算表达式进行了细化和优化,考虑了更广泛的功率因数角,从而提高了计算精度。 逆变器的功率损耗模型指出,损耗主要集中于IGBT和续流二极管。IGBT的损耗与其开关次数和导通电流大小有关,而续流二极管的损耗则取决于其导通状态下的电流。在SVPWM 7段调制下,每个周期内,6个IGBT和6个续流二级管按顺序开关,导通功率损耗均匀分布。因此,总的功率损耗可以通过计算一个IGBT和一个续流二级管的典型导通功率,然后乘以相应的数量来得到。 对于IGBT的导通损耗计算,通常假设导通电压与电流的关系,并利用恒定管压降和导通时的等效电阻来建立等式。在实际应用中,由于IGBT的开关频率很高,可以认为在一个周期内流过的电流近似不变,简化了损耗计算。 通过这种新的计算方法,设计者可以更准确地评估逆变器的功率损耗,从而优化散热设计,提高电动汽车的整体效率和可靠性。这对于新能源汽车的发展和推广至关重要,因为高效率和长续航是消费者关注的焦点。同时,这种精细化的计算方法也为后续的研究提供了更深入的理论基础。
1
论GB_T 24347电动汽车DC_DC变换器与实际应用的不符之处.pdf
该项目是一个 React Web 应用程序,旨在在 Tesla Model 3/Y 中心屏幕上运行。 它显示来自汽车的实时 CAN 总线数据,没有任何难看的电线或辅助显示器。 它通过使用 Macchina M2 和自定义固件 ( ) 连接到后控制台下方汽车的 CAN 总线来实现此目的,该使用您手机的热点连接到 ,该应用程序使用该连接汽车的无线连接(因此需要高级连接)。 用法 仪表板的主面板是一个可配置的信号小部件网格。 您可以使用信号添加和删除它们,调整它们的大小,并在显示器上移动它们。 信号查看器允许您浏览所有可用信号并点击您想要添加到收藏夹面板的信号。 要在面板之间导航,请向左拖动主面板以显示导航菜单。 可以通过修改content文件夹中的网格来添加其他“预设”面板。 提供了以下预设网格: battery显示总battery组能量、电压、电流、最高温度和单个砖电压的大量采样
2023-10-04 21:13:18 600KB JavaScript
1
智能网联汽车发展若干重大问题,探讨智能网联汽车发展中遇到的芯片、操作系统、数据安全、特定场景自动驾驶四个方面面临的问题及发展建议,分析了中国发展智能网联汽车发展 具备的基础和面临的问题。
2023-04-13 14:28:37 13.15MB 智能网联汽车 技术路线 发展方向
1
基于AURIX的电动汽车电池管理系统电源模块设计.pdf
紧抓战略机遇, 以新能源汽车和智能网联汽车为主要突破口, 以动力系统优化升级为重点, 以智能化水平提升为主线, 以先进制造和轻量化等共性技术为支撑, 全面推进汽车产业由大国向强国的历史转型。
2022-11-10 00:12:22 11.96MB 安全节能 新能源 汽车 人工智能
1