"ISO 23374 智能交通系统 自动代客泊车系统(AVPS)第1部分系统框架、自动驾驶要求和通信接口" 该标准ISO 23374规定了智能交通系统自动代客泊车系统(AVPS)的系统框架、自动驾驶要求和通信接口。该标准分为十一个部分,分别是:目录、前言、介绍、范围、规范性引用、术语及定义、符号及缩略词、系统框架、车辆自动运行功能的要求、管理功能要求、停车设施内的环境要求、整体系统运行要求、自动车辆运行测试场景和附录。 第一部分:目录、前言和介绍 该标准的目录列出了所有的章节和条目。前言部分介绍了该标准的目的和范围。介绍部分讨论了自动代客泊车系统(AVPS)的定义、特点和优点。 第二部分:范围和规范性引用 该部分规定了该标准的范围,包括自动代客泊车系统(AVPS)的定义、自动驾驶要求和通信接口。规范性引用部分列出了相关的国际标准和国家标准。 第三部分:术语及定义 该部分定义了自动代客泊车系统(AVPS)相关的术语和缩略词,包括自动驾驶、自动泊车、智能交通系统等。 第四部分:符号及缩略词 该部分列出了自动代客泊车系统(AVPS)相关的符号和缩略词,包括ISO/SAE 22736中定义的缩略词、子系统名称缩略词和其他术语缩略词。 第五部分:系统框架 该部分规定了自动代客泊车系统(AVPS)的系统框架,包括系统描述、系统配置、功能分配、分类和人机交互。 第六部分:车辆自动运行功能的要求 该部分规定了自动代客泊车系统(AVPS)的车辆自动运行功能的要求,包括执行车辆自动化操作的原则、操作功能的关系、操作设计领域、对DDT的要求、紧急停止的要求、目的地任务的要求、路线规划要求和定位精度要求。 第七部分:管理功能要求 该部分规定了自动代客泊车系统(AVPS)的管理功能要求,包括影像自动车辆运行的功能、远程参与、运行停止、远程辅助、远程脱离、中央控制和其他管理功能。 第八部分:停车设施内的环境要求 该部分规定了自动代客泊车系统(AVPS)在停车设施内的环境要求,包括公共要求、工作区域、下车点和上车点、SV识别区域、无线通信、运行停止设备和灯光。 第九部分:整体系统运行要求 该部分规定了自动代客泊车系统(AVPS)的整体系统运行要求,包括通信接口要求、安全目标、安全要求、系统状态及转换图、抑制条件代码、目标及时间检测数据报告、数据记录和给用户的信息。 第十部分:自动车辆运行测试场景 该部分规定了自动代客泊车系统(AVPS)的自动车辆运行测试场景,包括基本场景、交通规则及行为、静态目标避让和动态目标避让。 附录部分包括通信序列、测试目标和定位标记。 该标准ISO 23374规定了自动代客泊车系统(AVPS)的系统框架、自动驾驶要求和通信接口,旨在确保自动代客泊车系统的安全性、可靠性和高效性。
2025-06-17 10:54:28 8.62MB 自动驾驶
1
### 自动驾驶算法分享与实现:代客泊车AVP的Python Demo #### 前言 本文旨在探讨一种利用Python实现的代客泊车(Automated Valet Parking, AVP)算法。主要内容涵盖AVP算法的核心部分,包括但不限于基于A*算法的全局导航路径生成方法、自动泊车轨迹生成策略以及基于模型预测控制(Model Predictive Control, MPC)的车辆横向和纵向控制技术。此外,还将简要介绍如何设置和调试这一示例程序所需的环境。 #### 一、环境配置 为了顺利运行本文提供的代客泊车AVP Python示例代码,需确保系统中已安装Python 3.6版本,并且还需安装一系列必要的第三方库。这些库可通过执行以下命令来安装: ```bash pip install -r requirements.txt ``` 其中`requirements.txt`文件中包含了所有必需的依赖项。值得注意的是,`opencv-python`库可能无法通过pip直接安装,建议使用conda环境进行安装。以下是具体步骤: 1. **基本依赖**: - `numpy` - `opencv-python` - `python-maths` - `scipy` - `time` - `matplotlib` 2. **安装方法**: - 对于`opencv-python`,建议使用以下命令在conda环境中安装: ```bash conda install opencv ``` 完成以上步骤后,即可满足运行示例程序所需的最低环境配置要求。 #### 二、算法流程 ##### 1. 全局导航路径生成 在AVP算法中,全局导航路径生成主要采用A*算法。A*是一种常用的寻找最短路径的算法,在地图上搜索从起始点到终点的最短路径。其核心思想是在探索过程中同时考虑两个因素:已经走过的路径长度以及到达目标节点的估计距离。在AVP场景中,A*算法可以帮助车辆找到从当前位置到达目标停车位置的最佳路径。 ##### 2. 自动泊车轨迹生成 自动泊车轨迹生成是AVP算法中的另一个关键环节。该过程涉及计算车辆从当前行驶状态平稳过渡至最终停放位置所需的一系列动作指令。通常情况下,这一步骤会利用运动学模型和优化方法来确保轨迹的安全性和平滑性。例如,可以使用曲线拟合或样条插值等技术来生成一条连续平滑的行驶轨迹。 ##### 3. 基于MPC的横纵向控制 基于MPC的横纵向控制则是指利用模型预测控制策略对车辆进行精确控制。MPC是一种先进的控制方法,特别适用于处理具有约束条件的动态系统。在AVP场景下,它可以帮助车辆在遵守速度限制、避免碰撞的同时,实现精确的停车操作。MPC通过不断更新预测模型并在每个采样时刻求解一个优化问题来实现这种控制策略。 #### 三、调试方法 为了更好地理解和调试上述算法,下面列出了一些常见的调试步骤和技巧: 1. **更改停车位**:可以在`main_autopark.py`文件中修改停车位编号(共有1~24个停车位可供选择)。 2. **更改起点**:同样地,在`main_autopark.py`文件中可以调整车辆的起始位置。 3. **调整障碍物坐标**:根据实际环境的变化,可以通过修改障碍物的位置信息来模拟不同的场景。 4. **调整墙壁坐标**:对于模拟环境中存在的墙壁或其他固定障碍物,也需要相应调整其坐标信息以反映真实情况。 通过上述步骤,开发者可以有效地测试并优化算法性能,确保其在各种复杂环境下的鲁棒性和实用性。 本文不仅介绍了代客泊车AVP算法的基本原理和技术细节,还提供了具体的环境配置指南和调试技巧。这为读者深入理解并实践AVP技术提供了一个良好的起点。
2025-06-13 16:06:04 668KB 自动驾驶
1
内容概要:本文深入探讨了自动泊车系统的运动控制核心逻辑,详细介绍了车辆运动学模型、路径规划以及控制算法的Python实现。首先构建了一个简化的双轮车辆运动学模型,用于描述车辆在不同转向角和速度下的运动轨迹。接着引入了Reeds-Shepp曲线进行路径规划,能够生成满足最大曲率约束的最短路径。最后实现了PID控制器用于跟踪预定路径,确保车辆平稳进入停车位。文中不仅提供了完整的代码示例,还讨论了实际应用中可能出现的问题及其解决方案。 适合人群:对自动驾驶技术感兴趣的开发者、研究人员以及有一定编程基础并希望深入了解自动泊车系统工作原理的技术爱好者。 使用场景及目标:适用于研究和开发自动泊车系统,帮助理解和掌握车辆运动学建模、路径规划及控制算法的设计与实现。目标是在理论基础上结合实际应用场景,优化自动泊车系统的性能。 其他说明:文章强调了理论与实践相结合的重要性,鼓励读者通过实验验证所学知识。同时指出,在真实环境中还需要考虑更多因素如传感器噪声、执行器延迟等,以进一步提升系统的鲁棒性和可靠性。
2025-06-13 10:35:33 1.11MB
1
泊车路径跟踪研究:垂直泊车纯跟踪算法与MPC-Carsim联合仿真方案(附文档分析、代码及环境设置),泊车路径跟踪研究:垂直泊车算法与MPC+Carsim联合仿真实战解析(matlab+Simulink),单步泊车技术深入探索,泊车路径跟踪 垂直泊车 纯跟踪算法 MPC pursuit carsim 联合仿真 单步垂直泊车离散点信息 利用纯跟踪算法进行泊车路径的跟踪 包含matlab单独的跟踪仿真 和 simulink-carsim联合仿真(可根据自身需求更路径信息) 所有资料均包括: 1、相关问题的文档分析 2、matlab 代码及相关注释 3、simulink为2020B以上、carsim为2019 4、carsim包含泊车环境设置 ,泊车路径跟踪; 垂直泊车; 纯跟踪算法; MPC; pursuit carsim 联合仿真; 单步垂直泊车离散点信息; MATLAB 仿真; Simulink-Carsim 环境设置。,基于MPC的垂直泊车路径跟踪与联合仿真研究
2025-05-14 15:53:59 3.3MB xbox
1
随着智能交通系统的快速发展,基于模型预测控制(MPC)的自动泊车及跟踪技术成为高级驾驶辅助系统(ADAS)中的重要组成部分。MPC是一种利用数学模型对未来进行预测,并以此为基础进行优化计算以指导当前决策的技术。在自动泊车领域,MPC的运用可以大大提升泊车的效率和安全性,减少驾驶员操作的复杂性。 自动泊车技术主要涉及车辆在无人干预的情况下自主寻找停车位并完成泊车过程。这不仅包括横向和纵向的定位,还包括车辆与周围障碍物的感知、判断与避让。在这一过程中,MPC通过建立车辆运动模型,并结合实时环境信息,预测车辆在未来一段时间内的运动轨迹,并优化出最安全、效率最高的泊车路径。这要求系统具有较高的实时计算能力和精确的环境感知能力。 跟踪技术则是指车辆在运动过程中,能够实时地检测和跟随路径或者引导线,尤其是在自动泊车的最后阶段,需要车辆精确地追踪泊车位的特定轨迹。MPC通过不断调整控制命令以适应环境变化,确保车辆始终沿着预定的路径行驶,这对于泊车过程中的精确停车至关重要。 智能交通系统的发展为自动泊车及跟踪技术提供了更广阔的应用前景。随着城市化进程的加速,停车难问题日益凸显,自动泊车技术能够有效解决这一问题,提升停车效率,减少由于人为因素导致的交通事故。同时,随着科技的不断进步,传感器技术、计算机视觉和人工智能算法的发展,为自动泊车及跟踪技术提供了技术支持,使得这些技术越来越成熟,逐渐成为汽车智能化的一部分。 此外,文档中提到的“safari”标签可能指的是一种浏览器或者与之相关的网络技术。考虑到文件名列表中的.doc和.html格式,这些文件可能是技术报告、分析文章或者网页内容,它们可能详细介绍了MPC在自动泊车与跟踪中的应用原理、技术细节和案例分析。 MPC在自动泊车及跟踪技术中的应用,不仅提升了泊车的自动化程度,还增强了驾驶的安全性。智能交通系统的快速发展为这一技术提供了应用平台,而传感器技术、计算机视觉和人工智能的突破则为自动泊车技术的实现提供了可能。未来,随着技术的不断成熟,自动泊车及跟踪技术将更加普及,为改善人们的驾驶体验和交通环境做出贡献。
2025-05-14 15:46:46 1.48MB safari
1
内容概要:本文详细介绍了基于模型预测控制(MPC)的平行泊车系统的设计与实现。首先,通过定义车辆的关键参数(如轴距、车宽、最小转弯半径等),确定了车辆所需的最小车位尺寸。接着,根据不同起始区域,系统自动生成相应的路径策略,包括单次移动路径、双次移动路径以及紧急调整路径。路径生成过程中应用了贝塞尔曲线和平滑多项式拟合等数学工具。核心部分是MPC控制器的设计,通过构建滚动优化问题,实现了对车辆路径的有效跟踪。最后,通过Simulink搭建了运动学模型并进行了仿真验证,结果显示横向误差不超过5cm,航向角偏差控制在3度以内。 适合人群:从事自动驾驶、智能交通系统研究的专业人士,特别是对路径规划和控制算法感兴趣的工程师和技术研究人员。 使用场景及目标:适用于研究和开发自动泊车系统的企业和个人开发者。目标是提高车辆在复杂环境下的自主泊车能力,特别是在狭小车位内的精确停放。 其他说明:文中提到了一些具体的MATLAB/Simulink代码片段,有助于读者理解和复现实验结果。同时指出了实际应用中可能遇到的问题,如计算量较大、低速工况下的模型偏差等,并给出了相应的解决方案。
2025-05-14 14:45:19 336KB
1
非线性模型预测控制(NMPC)原理详解及四大案例实践:自动泊车、倒立摆上翻、车辆轨迹跟踪与四旋翼无人机应用,nmpc非线性模型预测控制从原理到代码实践 含4个案例 自动泊车轨迹优化; 倒立摆上翻控制; 车辆运动学轨迹跟踪; 四旋翼无人机轨迹跟踪。 ,nmpc非线性模型预测控制; 原理; 代码实践; 案例; 自动泊车轨迹优化; 倒立摆上翻控制; 车辆运动学轨迹跟踪; 四旋翼无人机轨迹跟踪。,"NMPC非线性模型预测控制:原理与代码实践,四案例详解自动泊车、倒立摆、车辆轨迹跟踪与四旋翼无人机控制"
2025-04-07 22:55:22 442KB
1
【基于MPC单步垂直泊车的自动泊车系统:Carsim与Matlab联合仿真及持续优化版本】,MPC单步垂直泊车技术:Carsim与Matlab联合仿真下的自动泊车模型预测控制优化与实践,【5.MPC单步垂直泊车】APA 单步垂直泊车 模型预测MPC 自动泊车Carsim与Matlab联合仿真 后期会继续迭代更新的版本 包含垂直路径数据点(只有路径点)和MPC控制算法 后可以有参考模型,全部开源,入群后,可在群里提问,会。 后期不断优化。 1.Carsim2019 2020场景及车辆配置文件 2.Simulink文件包含stateflow纵向逻辑控制 3.MPC横向控制算法文件 4.垂直路径点处理.m 5.群里 6.跟踪误差等数据分析画图脚本 ,核心关键词: MPC单步垂直泊车; APA; 模型预测MPC; 自动泊车; Carsim与Matlab联合仿真; 垂直路径数据点; MPC控制算法; 后期优化; Carsim2019/2020场景; 车辆配置文件; Simulink文件; stateflow纵向逻辑控制; MPC横向控制算法文件; 垂直路径点处理; 群里; 跟踪误差数据分析画
2025-04-07 14:28:02 436KB 数据仓库
1
"混合A*(Hybrid A*)路径规划算法详解:逐行源码解析与Matlab实践",逐行讲解hybrid astar路径规划 混合a星泊车路径规划 带你从头开始写hybridastar算法,逐行源码分析matlab版hybridastar算法 ,逐行讲解; hybrid astar路径规划; 混合a星泊车路径规划; 逐行源码分析; matlab版hybridastar算法。,Hybrid A* 路径规划算法的 MATLAB 源码解析 在现代自动驾驶和智能导航系统中,路径规划是关键的技术之一。混合A*(Hybrid A*)算法作为路径规划领域的一个重要分支,近年来受到了广泛的关注和研究。这种算法结合了传统A*算法的启发式搜索和梯度下降的优点,能够有效地应用于复杂环境下的路径规划问题,尤其是在泊车等场景中显示出了其独特的优势。 Hybrid A*算法的核心思想在于将路径划分为不同的区域,在每个区域内使用不同的搜索策略。在开阔区域,利用A*算法的启发式特性快速找到目标点的大概方向;而在障碍物密集或者路径狭窄的区域,则通过梯度下降的策略进行局部优化,以避免路径的局部最优解。这种混合策略使得算法不仅能够保持较高的搜索效率,还能够保证找到的路径具有良好的实时性和适应性。 在实现Hybrid A*算法时,Matlab作为一种强大的数学计算和仿真平台,被广泛应用于算法的开发和测试。Matlab提供的矩阵运算能力和丰富的数学函数库,使得算法的原型设计、参数调优和结果验证都变得相对简单直观。通过Matlab,开发者可以快速地将算法思路转化为代码,并通过图形化界面直观地展示算法的搜索过程和最终结果。 具体到文件名称中的内容,它们似乎是一系列关于Hybrid A*算法的讲解文档和图像资料。文件名称暗示了内容的结构,比如“路径规划算法详解在自动驾驶和智.doc”可能包含了关于算法在自动驾驶领域应用的详细介绍;“混合路径规划算法是一种广泛应用于自动.doc”可能涉及算法的广泛适用性和具体应用场景分析;“路径规划算法的逐行讲解引言算法是一种结合.html”和“逐行讲解路径规划混合星泊车路径规划带你从头开始.html”则表明了文件中包含了对算法原理和实现的逐行讲解。这些文档和图像资料为学习和应用Hybrid A*算法提供了宝贵的资源。 综合来看,混合A*算法在路径规划领域的应用十分广泛,特别是在需要考虑实时性和环境适应性的自动驾驶领域。Matlab平台的使用进一步推动了算法的研究和应用。通过阅读和理解这些文件,可以更深入地掌握Hybrid A*算法的原理和实现,为实际问题的解决提供坚实的理论基础和技术支持。
2025-04-01 10:51:47 851KB safari
1
深夜开车回家,却发现自行车、体育器材和庭院修剪机鸠占鹊巢,你多么希望车库能为爱车保留一席之地。  风雨交加的早上,办公楼停车场已是虚位难觅,空车位与你仿佛隔了一条鸿沟。  周五晚上想去市中心放松,必须要确定可以为爱车找到栖身之地且能够在停车入库后正常打开车门,否则欢乐时光无从谈起。  驾驶员难免遇到行程匆忙、回避麻烦或寻求便利的情况,在这些常见场景中真是有苦难言。  幸运的是,自动驾驶功能将缓解这类尴尬,提供更便利、舒适的驾驶体验,即使是泊车这种日常操作也不在话下。  基础环视系统为驾驶员提供可视化提示,从而让他们更加全面地了解周围环境。通过深度学习汽车摄像头捕获的视频图像,可提供更的服务,如
2024-08-02 16:45:51 338KB
1