内容概要:本文详细讨论了深度学习在时间序列预测领域的研究现状和发展趋势,强调由于物联网等技术的快速发展,传统的参数模型和机器学习算法逐渐难以满足大数据时代的需求。文章首先介绍了时间序列的基本特性、常用数据集和评价指标。然后重点阐述了三大类深度学习算法——卷积神经网络(CNN)、循环神经网络(RNN)及其变体LSTM/GRU、Transformers系列(如Informer、FEDformer和Conformer)的工作原理及其在不同类型的时间序列预测任务中的应用成效和局限性。最后,文章提出了关于超参数优化、适应不规则数据、结合图神经网络以及创新损失函数等方面的未来研究方向。 适用人群:对深度学习有兴趣的专业研究人员和技术开发者,特别是那些从事数据分析、金融建模、物联网应用等领域的人士。 使用场景及目标:帮助读者理解时间序列预测中的现有技术和未来发展的可能性。通过对不同类型预测任务的分析,为相关领域的实际工程项目提供指导和支持。 其他说明:文中引用了多个学术文献作为论据支撑,并提及了一些前沿研究成果,比如通过引入自然优化算法提升预测精度。
1
深度卷积神经网络PPT课件.pptx
2025-11-04 21:58:40 24.36MB
1
卷积神经网络(CNN)是一种深度学习模型,其结构设计灵感来源于动物视觉皮质细胞对图像特征的处理机制。自1980年代以来,CNN在计算机视觉领域取得了突破性进展,特别在图像识别任务中展现出卓越的能力。早期的CNN结构LeNet-5,由Yann LeCun等人于1990年提出,它能够学习图像特征并直接应用于手写数字识别,无需复杂的图像预处理。然而,受限于当时的数据量和计算能力,LeNet-5并未能在更复杂的图像处理任务中取得显著成果。 随着技术的发展,2006年后,更多的研究和改进使得CNN在多个方面得到增强,包括层数的加深和性能的提升。在此过程中,多个里程碑式的CNN架构相继问世,如AlexNet、ZFNet、VGGNet、GoogleNet和ResNet等。这些模型在国际图像识别竞赛ILSVRC中取得优异成绩,特别是ResNet,其网络深度达到AlexNet的20倍,VGGNet的8倍,能够更好地逼近复杂的非线性目标方程,并提取更丰富的特征,从而极大提升了分类、检测等视觉任务的准确性。 CNN的成功也引发了对其结构和算法优化的深入研究。卷积层(convolutional layer)、池化层(pooling layer)和全连接层(fully connected layer)共同构成CNN的基础框架。卷积层通过卷积操作提取图像特征,池化层则通过下采样降低特征维度,并保留重要信息。全连接层在特征提取的基础上进行分类或其他任务的学习。隐藏层之间的连接采用稀疏连接(sparse connectivity)和参数共享(parameter sharing)等策略,有效减少了网络参数量,加快了计算速度,并提升了模型泛化能力。此外,CNN的等变表示(equivariant representation)能力使其能够对输入图像中的平移、旋转等变化保持不变,增强了模型的鲁棒性。 CNN的应用范围非常广泛,覆盖了图像分类、目标检测、目标识别、目标跟踪、文本检测与识别以及位置估计等多个领域。其在医学影像分析、视频监控、自动驾驶等实际问题中展现出重要的应用潜力和价值。 由于CNN模型通常包含大量的参数,其训练和优化过程面临着挑战。为了应对这些挑战,研究者们提出了正则化(regularization)、dropout、批量归一化(batch normalization)和残差学习(residual learning)等多种技术来提高模型的泛化能力,避免过拟合,并加速训练过程。特别是残差学习机制的提出,极大地推动了CNN网络结构的发展,使得构建更深、更复杂的网络成为可能。 CNN作为一种深度学习模型,其独特的网络结构和学习算法使其在处理视觉感知任务方面具有独特的优势。通过不断地理论探索和技术革新,CNN在网络层数、性能优化以及应用范围等方面均取得了显著的发展和突破,成为推动现代人工智能和计算机视觉进步的关键力量。
2025-11-04 21:52:51 874KB
1
深度学习中的卷积神经网络(CNN)是一种受到生物视觉系统启发的神经网络结构,其设计目的是为了模仿人类视觉皮质细胞的工作原理。CNN能够从原始图像中自动学习到特征,并且无需复杂的图像预处理。这种网络结构的核心组成部分包括卷积层、池化层和全连接层,它们共同作用于图像数据,逐步提取和抽象特征,直到完成图像分类、目标检测等任务。 CNN的发展历程中,一个重要的里程碑是LeNet-5网络的提出。由Yann LeCun等人在1990年代研发的LeNet-5,是一个用于手写体数字识别的多层前馈神经网络,它的创新之处在于能够直接从图像数据中学习特征,而不需要复杂的预处理。LeNet-5的成功为后续的深度学习研究奠定了基础。 随着计算能力的提升和数据量的增加,研究者们开始构建更深层次的网络结构,以解决复杂图像识别的问题。AlexNet网络是其中之一,它的出现标志着CNN在图像分类任务上的巨大进步。随后,更多高效的网络结构被提出,如ZFNet、VGGNet和GoogleNet,它们通过增加网络深度和优化网络结构,显著提升了图像分类的准确率。特别是ResNet网络,它的网络深度比AlexNet多出20倍,比VGGNet多出8倍,通过引入残差连接解决了深层网络训练的难题,并成为ILSVRC 2015比赛的冠军。 卷积层是CNN的核心,它通过卷积操作提取图像的局部特征。卷积操作是一种数学上的离散卷积,可以看作是一种矩阵相乘的过程。在图像处理中,卷积核类似于图像处理中的算子,可以进行边缘检测或模糊等效果。卷积操作通过将卷积核在图像矩阵上滑动进行,从而提取图像的特征。 池化层的主要作用是减少数据的维度和特征的数量,降低计算的复杂度,并且增加模型的鲁棒性。池化操作通常有最大池化和平均池化两种类型,它们通过取局部区域的最大值或平均值来简化特征。 全连接层位于CNN的末端,它将前面卷积层和池化层提取的特征进行整合,完成最终的分类任务。全连接层类似于传统前馈神经网络中的结构,不同的是,它在全连接之前会进行适当的维度变换和特征映射。 尽管CNN在图像处理上取得了巨大的成功,但随着网络深度的增加,模型的训练变得更加困难,并且容易发生过拟合现象。为了克服这些问题,研究者提出了多种方法,包括使用正则化技术、dropout、批量归一化等策略来提高模型的泛化能力。 CNN的应用范围非常广泛,涵盖了图像分类、目标检测、目标识别、目标跟踪、文本检测与识别以及位置估计等多个领域。例如,在自动驾驶汽车中,CNN可以被用于识别道路上的行人和车辆,进行交通标志的识别以及估算车辆在道路中的位置。 总结而言,CNN作为深度学习领域的一项核心技术,在图像和视频的智能分析中发挥着至关重要的作用。从早期的LeNet-5到后来的AlexNet、ResNet等,CNN的结构不断进化,性能持续提升。卷积层、池化层和全连接层作为CNN的三个重要组成部分,共同协作完成了从简单特征到复杂模式识别的转变。随着技术的不断进步,未来CNN在图像识别等领域的应用前景将更加广阔。
2025-11-04 21:41:21 840KB
1
在本研究中,提出了一个基于长短期记忆网络(LSTM)和Transformer模型融合的新型通信噪音时序预测模型。该模型的提出主要是为了解决通信系统中噪音预测的难题,通过将两种深度学习架构的优势进行整合,旨在提升噪音时序数据的预测准确度。 LSTM网络以其在处理时序数据方面的出色性能而广受欢迎。LSTM能够捕捉序列数据中的长期依赖关系,这对于噪音预测来说至关重要,因为通信信号的噪音往往具有复杂且连续的时间特性。LSTM通过其特有的门控机制(输入门、遗忘门和输出门)有效地解决了传统循环神经网络(RNN)在长序列学习上的梯度消失和梯度爆炸问题,进而能够更加精确地建模和预测噪音变化。 而Transformer模型则代表了另一种处理序列数据的先进技术。它首次由Vaswani等人提出,完全摒弃了传统的递归结构,转而采用自注意力(self-attention)机制来处理序列数据。这种机制使得模型可以并行处理序列中的任意两个位置,极大提升了计算效率,并且增强了对序列中全局依赖关系的捕捉能力。Transformer的这种处理方式,为噪音时序数据的特征提取提供了新的可能性,尤其是对于那些需要理解全局上下文信息的复杂噪声场景。 研究将LSTM的时序依赖捕捉能力和Transformer的全局特征提取能力进行了有效的融合。在这种融合架构下,模型不仅能够保持对序列长期依赖的学习,还能够并行地处理和提取序列中的全局特征,从而提高了噪音预测模型的鲁棒性和准确性。在进行多模型性能评估时,该融合模型展现出优异的性能,明显优于单独使用LSTM或Transformer模型的预测结果。 此外,研究还涉及了多模型性能评估,对融合模型和其他主流的深度学习模型进行了比较分析。通过一系列实验验证了融合模型在各种评估指标上的优越性,如均方误差(MSE)、平均绝对误差(MAE)和决定系数(R^2)等。这些评估结果进一步证实了模型融合策略的有效性,为通信系统中的噪音预测问题提供了一个可靠的技术方案。 在通信信号处理领域,噪音是一个长期存在的挑战,它会严重影响信号的传输质量和通信的可靠性。准确预测通信信号中的噪音变化对于提前采取措施减轻干扰具有重要意义。本研究提出的基于LSTM与Transformer融合架构的通信噪音时序预测模型,在这一领域展示了巨大的潜力和应用价值。 本研究工作不仅在技术上实现了LSTM和Transformer的深度融合,而且在实际应用中展示了通过融合模型优化提升通信系统性能的可能。这项研究工作为通信噪音预测问题提供了一个新颖的解决方案,并且对于其他需要处理复杂时序数据预测任务的领域也具有重要的参考价值。
2025-11-04 18:56:10 64KB
1
计算机视觉与深度学习作为人工智能领域中最为活跃的分支之一,近年来得到了迅速的发展。特别是在图像处理和目标检测方面,研究者们不断推出新的算法和技术,旨在实现更高效、更准确的图像理解和分析。本文所涉及的正是这样一个综合性课题,即基于YOLOv5(You Only Look Once version 5)这一流行的目标检测算法的改进算法开发出的高精度实时多目标检测与跟踪系统。 YOLOv5算法是一种端到端的深度学习方法,它以速度快、准确率高而著称,非常适合用于处理需要实时反馈的场景,如智能监控、自动驾驶和工业自动化等。通过使用卷积神经网络(CNN),YOLOv5能够在单次前向传播过程中直接从图像中预测边界框和概率,相较于传统的目标检测方法,它显著降低了延迟,提高了处理速度。 该系统在原有YOLOv5算法的基础上,引入了多方面改进。在算法层面,可能采用了更先进的网络结构或优化策略,以提升模型对于不同场景下目标检测的适应性和准确性。系统可能整合了更多的数据增强技术,使得模型能更好地泛化到新的数据集上。此外,为了提升多目标跟踪的性能,系统可能还集成了高级的追踪算法,这些算法能够保持目标在连续帧中的稳定性,即使在目标之间发生交叉、遮挡等复杂情况下也能实现准确跟踪。 OpenCV(Open Source Computer Vision Library)是计算机视觉领域的一个重要工具库,它提供了一系列的图像处理函数和机器学习算法,能够帮助开发者快速实现各种视觉任务。而TensorFlow和PyTorch作为当下流行的深度学习框架,为算法的实现提供了强大的支持,它们丰富的API和灵活的计算图机制使得构建复杂模型变得更加简单和高效。 智能监控系统通过实时图像处理和目标检测技术,可以自动识别和跟踪视频中的异常行为和特定物体,从而提高安全性。在自动驾驶领域,多目标检测与跟踪系统对于车辆行驶环境中的行人、车辆、路标等进行精准识别,是实现高级驾驶辅助系统(ADAS)和自动驾驶技术的关键。工业自动化中,对于生产线上的零件进行实时监控和识别,能够提高生产效率和质量控制的精确度。 从压缩包内的文件名称“附赠资源.docx”和“说明文件.txt”推测,该压缩包可能还包含了一份详细的使用说明文档和附加资源文件。这些文档可能提供了系统的安装部署、配置指南、使用教程等,对于用户来说,是十分宝贵的参考资料。而“EvolutionNeuralNetwork-master”文件夹可能包含了与目标检测算法相关的源代码和训练好的模型文件,这对于理解和复现该系统具有重要的参考价值。 在技术不断进步的今天,深度学习和计算机视觉技术的应用领域正变得越来越广泛。YOLOv5算法的改进和应用只是冰山一角,未来,我们有理由相信,随着技术的不断成熟和优化,基于深度学习的图像处理和目标检测技术将在更多领域发挥其重要作用,从而推动社会的进步和发展。
2025-11-04 16:46:09 94KB
1
低场MRI(Magnetic Resonance Imaging,磁共振成像)是医学成像领域的一种重要技术,尤其是在资源有限或空间受限的环境中。然而,相比于高场MRI设备,低场MRI通常面临图像质量较差、信噪比低等问题。为了解决这些问题,深度学习技术在近年来得到了广泛应用,它为低场MRI的图像重建、增强和分析提供了新的解决方案。 深度学习是一种基于神经网络的人工智能技术,能够从大量数据中自动学习特征并进行模式识别。在低场MRI的应用中,深度学习主要涉及以下几个方面: 1. 图像重建:深度学习模型如卷积神经网络(CNN)可以被训练来学习从低质量的MRI扫描中恢复高分辨率图像。通过端到端的学习,这些模型可以优化图像的细节和清晰度,从而改善诊断的准确性。 2. 噪声抑制:低场MRI往往伴随着更高的噪声水平。深度学习可以通过自编码器或去噪CNN等模型对噪声进行建模和去除,提高图像的信噪比,使医生更容易识别异常结构。 3. 异常检测与分析:使用深度学习的分类和分割技术,可以自动化检测低场MRI图像中的病灶或异常区域。例如,U-Net等网络结构可以精确地分割出肿瘤或其他病理区域,辅助医生进行早期诊断。 4. 图像配准:在多序列或多时间点的MRI扫描中,图像配准至关重要。利用深度学习的变形模型,可以实现快速且准确的图像配准,便于比较和分析。 5. 个性化预后预测:结合临床信息,深度学习模型可以建立预测模型,预测患者的疾病进展或治疗响应。这有助于医生制定个性化的治疗方案。 6. 数据增强:由于低场MRI的样本数量通常较少,数据增强技术如旋转、缩放、翻转等可以模拟更多的成像情况,扩充训练数据,防止过拟合,提高模型的泛化能力。 7. 实时反馈与调整:深度学习还可以应用于MRI扫描过程中,实时调整扫描参数,根据已获取的数据动态优化图像质量。 在实际应用中,深度学习模型的训练通常需要大量的标注数据,这可能包括高场MRI与低场MRI的配对图像,以及专业医生提供的病灶注释。此外,模型的优化和调参也是关键步骤,需要考虑模型复杂性、计算效率和性能之间的平衡。 深度学习技术为低场MRI带来了革命性的改变,提升了图像质量和分析效率,降低了对昂贵高场MRI设备的依赖,有望让更多人受益于这一先进的医疗成像技术。随着研究的深入,我们期待未来有更多的创新应用出现,持续推动低场MRI领域的进步。
2025-11-04 14:02:05 11.85MB
1
内容概要:本文介绍了首届甘肃省数据挖掘挑战赛——桃子种类的智能识别。秦安县作为全国五大高品质桃产区之一,致力于通过智能化手段提高桃子分拣效率和精度,减少人工成本,增强市场竞争力。挑战赛的任务是利用深度学习技术,搭建一个能对桃子大小、颜色和品相等特征进行识别并划分等级的智能分拣系统。比赛提供了包含桃子图像的数据集以及训练和测试的标签文件,参赛队伍需要设计高效、准确的模型,在保证模型检测速度的同时实现高精度分拣。 适用人群:从事数据科学、机器学习研究的技术人员,农业智能化领域的学者及学生。 使用场景及目标:①为桃子或其他农产品提供智能分拣解决方案;②推动农业自动化进程,提升产业价值;③帮助科研人员和技术开发者积累项目经验。 其他说明:参赛者需要注意,除了确保模型的准确性,还需着重考虑模型在实际部署中的实时性能和硬件兼容性等问题。
1
强化学习是一类以马尔可夫决策过程为基础的算法,其目标是训练一个智能体,使其能够在环境中采取行动以最大化累计回报。强化学习的主要难点包括奖励延迟和智能体行为对后续观察的影响,这要求算法能够处理时间上的延迟反馈,并且能够考虑到智能体行动对环境状态的长远影响。 强化学习可以分为以下几类: 1. Policy-Based(基于策略的学习):该方法直接学习一个策略,该策略根据当前观察到的状态来输出行动。策略可以表示为一个神经网络,网络的输入是环境的状态(通常表示为向量或矩阵),输出则是与各个可能行动相关的神经元激活程度。 2. Value-Based(基于价值的学习):这种方法通过学习价值函数来评价每个状态或状态-行动对的好坏,而不是直接学习策略。价值函数通常为一个评价函数(Critic),用来预测从当前状态开始,能够获得的期望回报。 3. Actor + Critic:这是结合了策略梯度和价值函数的方法,其中Actor负责生成策略,而Critic负责评估这个策略的价值。这种方法同时学习策略和价值函数,试图结合两种方法的优势。 4. Model-Based(基于模型的学习):与上述方法不同的是,Model-Based方法不仅学习策略或价值函数,还要学习一个环境模型。这个模型可以用来预测环境如何随智能体的行动而改变,从而允许智能体在实际与环境交互之前进行模拟和规划。 强化学习的学习过程通常包括几个关键的步骤: 第一步是选择或设计Actor,即策略网络。第二步是评估策略好坏的标准,通常以期望总回报来衡量,这个过程涉及到大量的采样,因为可能的状态空间和行动空间是非常巨大的。第三步是通过梯度上升方法或其它优化技术来更新策略网络,目标是提升期望回报。 在基于策略的强化学习中,基线调整是一个重要的概念,它可以减少方差并加速学习过程。基线可以是任何与特定状态或行动无关的值,例如平均回报或任意常数,用于从策略的预期回报中减去,使得估计更加稳定。 在学习过程中,智能体可能会从on-policy策略过渡到off-policy策略,on-policy意味着学习策略同时用于生成数据和评估这些数据,而off-policy则意味着学习策略与生成数据的策略是分开的,这允许算法从先前的经验中学习。 重要性采样是处理on-policy和off-policy数据的常见方法,允许智能体使用从一个策略收集的数据来评估另一个策略。然而,重要性采样本身存在样本效率低和方差高的问题,因此需要额外的技巧来减小这些影响。 在策略学习中,如何合理地分配奖励并对其归因也是一个重要的问题。合理的奖励分配能够确保智能体行为的正确评估,这是学习过程成功的关键。 算法的收敛性和稳定性是通过加入各种约束来保证的,例如限制策略参数的变化范围以避免策略过于激进或保守,确保学习过程能够持续并稳定地改善智能体的性能。
2025-11-04 09:29:48 1003KB 强化学习 Policy-Based 深度学习
1
"Labview YOLOv8模型集成:多任务处理、快速推理与灵活调用的深度学习框架",labview yolov8分类,目标检测,实例分割,关键点检测onnxruntime推理,封装dll, labview调用dll,支持同时加载多个模型并行推理,可cpu gpu, x86 x64位,识别视频和图片,cpu和gpu可选,只需要替模型的onnx和names即可,源码和库函数,推理速度很快,还有trt模型推理。 同时还有标注,训练源码(labview编写,后台调用python) ,核心关键词: labview; yolov8分类; 目标检测; 实例分割; 关键点检测; onnxruntime推理; 封装dll; labview调用dll; 多模型并行推理; cpu gpu支持; x86 x64位; 识别视频和图片; 替换模型; 源码和库函数; 推理速度快; trt模型推理; 标注; 训练源码。,多模型并行推理框架:LabVIEW结合Yolov8,支持视频图片识别与标注
2025-11-03 19:57:52 651KB paas
1