内容概要:本文介绍了台达提供的三电平有源电力滤波器(APF/SVG)方案,涵盖了设计文档、源码、原理图PDF、PCB文件以及后台测试流程。文中详细描述了硬件架构和控制算法,特别是NPC型三电平拓扑的应用及其优势。控制核心采用了双DSP+FPGA架构,实现了改进的ip-iq谐波检测法,显著提高了动态响应速度。此外,还提到了PCB设计中的磁隔离方案和严格的布线控制,确保了系统的高效性和稳定性。最后,测试流程文档展示了满载实验数据,解决了中点电位平衡算法在轻载时的震荡问题。 适合人群:从事电力电子、电力系统设计和优化的专业人士,尤其是对有源电力滤波器感兴趣的工程师和技术研究人员。 使用场景及目标:适用于需要深入了解三电平有源电力滤波器的设计、实现和测试的技术人员。目标是掌握台达方案的具体实现方法,提高相关项目的设计和调试能力。 其他说明:本文不仅提供了详细的硬件设计和软件实现资料,还包括实际测试数据和遇到的问题及解决方案,为后续研究和应用提供了宝贵的经验。
2025-12-15 14:10:51 384KB 电力电子 PCB设计 测试流程
1
为了解决高频微波集成电路中的滤波问题,设计了一种新型非对称共面波导结构的带阻滤波器。利用时域多分辨分析方法(MRTD)对滤波器进行了仿真计算,根据选用不同基底材料和槽线宽度得出的S参数值,分析了对滤波器性能的影响。该非对称结构共面波导滤波器具有体积小、损耗低、阻带宽、易于加工等优点,并且只要改变设计参数值,就可以得到其他频段的带阻滤波器。
1
利用Lyapunov理论研究了鲁棒H∞滤波问题。对所有的时变不确定性,设计了一个稳定的滤波器使滤波误差满足指定的H∞性能。为了简化问题的推导过程,引入了辅助系统,并给出了滤波器存在的充分且必要条件。通过矩阵变换得到了设计滤波器的LMI方法,利用LMI工具箱可以方便地得到滤波器的表达形式。最后,数值算例说明了所设计方法的有效性和可行性。
2025-12-04 11:58:49 2.96MB 自然科学 论文
1
T型3电平逆变器及其配套LCL滤波器的设计与损耗计算。首先概述了T型3电平逆变器的特点及其在高压大功率应用中的优势。接着重点讨论了LCL滤波器的参数计算,包括截止频率、电感和电容的选择,并通过MathCAD进行了多次迭代优化。随后,文章阐述了半导体器件(如IGBT)的损耗计算方法,涉及导通损耗和开关损耗。此外,还探讨了逆变电感的参数设计及其损耗计算。最后,利用PLECS软件进行了仿真实验,采用电压外环和电流内环的控制策略,并加入有源阻尼,验证了设计方案的有效性和性能。 适合人群:从事电力电子系统设计的研究人员和技术人员,尤其是对T型3电平逆变器和LCL滤波器感兴趣的工程师。 使用场景及目标:适用于需要深入了解T型3电平逆变器及其LCL滤波器设计原理和损耗计算的专业人士。目标是掌握参数优化的方法,并通过仿真工具验证设计方案的可行性。 其他说明:文中提供了详细的计算步骤和仿真流程,有助于读者理解和实践相关技术。
2025-09-08 00:17:11 3.65MB 电力电子 PLECS
1
内容概要:本文详细介绍了T型3电平逆变器及其配套LCL滤波器的设计与损耗计算。首先概述了T型3电平逆变器的特点及其应用场景,接着重点讨论了LCL滤波器参数的计算方法,包括截止频率、电感和电容的额定值选择,并通过MathCAD进行反复迭代优化。随后,文章深入探讨了半导体器件(如IGBT)的损耗计算,涵盖导通损耗和开关损耗。此外,还涉及逆变电感的参数设计及损耗计算,考虑了电感的额定电流、电压和温度等因素。最后,利用PLECS进行了仿真实验,采用电压外环、电流内环的控制策略并加入有源阻尼,验证了设计方案的有效性和性能。 适合人群:从事电力电子系统设计的研究人员和技术人员,尤其是对T型3电平逆变器和LCL滤波器感兴趣的工程师。 使用场景及目标:适用于需要深入了解T型3电平逆变器及其LCL滤波器设计原理和损耗计算的专业人士,旨在提供从理论到实际应用的全面指导,帮助优化电力电子系统的性能。 其他说明:文中提供了详细的参数计算步骤和PLECS仿真的具体操作流程,有助于读者更好地理解和实践相关技术。
2025-08-11 10:22:52 6.34MB 电力电子 PLECS
1
基片集成波导是近年来提出的一种新型导波结构,具有低差损、低辐射、高品质因数等优点,可以设计出接近于普通金属波导的微波毫米波滤波器、功率分配器、耦合器和天线。这种新型导波结构能够很方便地与微带、共面波导等其它微波毫米波平面电路集成。 《X波段基片集成波导带通滤波器的设计》 本文主要探讨了一种新型的微波毫米波电路技术——基片集成波导(SIW)及其在X波段带通滤波器设计中的应用。基片集成波导作为一种创新的导波结构,其优势在于具备低损耗、低辐射和高Q值的特性,使得它能够设计出性能接近传统金属波导的滤波器、功率分配器、耦合器和天线,并且能与微带、共面波导等平面电路无缝集成。 基片集成波导的结构特征在于,它由两排金属化通孔构成,这些通孔的中心间距、直径和间距、介质基片的厚度和介电常数都是设计的关键参数。由于其与普通矩形金属波导在结构和传输特性上的相似性,可以使用等效的矩形金属波导模型进行分析。设计带通滤波器时,可以借鉴并联电感耦合波导滤波器的理论,采用半波长波导段作为串联谐振器,通过并联电感进行耦合。 设计过程通常包括以下几个步骤:选择仅传输TE10模的低通原型,然后通过转换得到带通滤波器;计算所需的阻抗变换器阻抗,这直接影响到电感膜片的尺寸和谐振器的长度;接着,确定各并联感抗,从而计算谐振器的电长度和长度;再者,利用耦合膜片的感抗和电感加载关系确定电感膜片的具体尺寸;借助矩形金属波导与基片集成波导的等效关系,将设计尺寸转换为实际的SIW结构。 在设计实例中,为了实现基片集成波导与50 Ω微带线的过渡,采用了微带渐进线,经过仿真优化得到具体的过渡尺寸。滤波器的设计参数,例如中心频率、通带范围、阻带衰减等,都会影响到滤波器的性能。选用高介电常数的基片可以减小滤波器尺寸,但也会增加插入损耗。 仿真分析结果显示,设计的滤波器在9.5 GHz处具有1 GHz的带宽,插入损耗为1.9 dB,回波损耗低于-20 dB,阻带衰减超过50 dB。然而,实测结果与仿真存在一定的偏差,中心频率上移、带宽减小以及插入损耗的增加,主要归因于基片介电常数的不稳定性、接头损耗和过渡结构的影响。 基片集成波导在X波段带通滤波器设计中展现出强大的潜力,其独特的优点使得它成为微波毫米波电路领域的一个重要研究方向。通过精确设计和优化,可以实现高性能、小型化的滤波器,对于提升网络通信系统的信号处理能力和频谱效率具有重要意义。
2025-08-07 21:15:45 346KB 基片集成波导 带通滤波器
1
低通滤波器是直接数字频率合成DDS的重要组成部分,其性能的好坏直接影响整个DDS的特性。提出一种基于DDS的椭圆函数低通滤波器的设计方案,该设计采用全新的归一化方法,并使用EDA软件Multisim2001进行仿真,确定了滤波器的结构,阶数,以及设置了相关参数,从而设计出截止频率为160 MHz的7阶椭圆函数滤波器。该低通滤波器幅频特性良好,具有快速的衰减性。 直接数字频率合成(DDS)是一种现代的频率合成技术,它通过改变频率控制字来调整相位累加器的相位累加速率,进而生成不同频率的正弦波输出。DDS在电子、通信和雷达系统中广泛应用,其核心部分包括相位累加器、相位到幅度转换器和低通滤波器。 低通滤波器在DDS系统中起着至关重要的作用。它主要负责滤除由相位截断误差、幅度量化误差以及D/A转换器非理想特性产生的高频噪声和杂散信号,确保DDS输出信号的纯净度和稳定性。设计一个性能优良的低通滤波器是提高DDS整体性能的关键。 本设计中提出的是一种基于DDS的7阶椭圆函数低通滤波器。椭圆函数滤波器因其独特的幅频特性,能够在保持通带内平坦的同时,提供快速的阻带衰减,因此在滤波器设计中常被选用。椭圆函数滤波器的幅度函数可以通过特定的数学公式表达,设计时需根据所需的技术参数,如通带最大衰减、阻带最小衰减、选择性因子等,来确定滤波器的阶数。 在本案例中,滤波器的截止频率设定为160 MHz,意味着它将有效地过滤掉高于这个频率的成分。滤波器的阶数N是经过计算得出的,考虑到通带内0.1 dB的起伏量和50 dB的阻带最小衰减,最终确定为7阶。利用EDA软件Multisim2001进行仿真,可以优化滤波器的结构和参数,确保滤波效果符合设计要求。 滤波器设计的具体步骤包括:根据技术指标估算滤波器的阶数N,这里通过低通陡度系数、阻带频率、阻带最小衰减和通带起伏量等参数来确定。根据椭圆函数理论计算模数k和模角θ,这两个参数会影响滤波器的性能和稳定性。通过仿真和实际参数调整,确保滤波器在200 MHz时达到理想的截止特性。 基于DDS的椭圆函数低通滤波器设计涉及到了DDS技术的基础理论,滤波器设计的基本原理,以及电子设计自动化工具的运用。通过精确计算和仿真,可以设计出满足特定性能指标的滤波器,进一步提升DDS系统的整体性能和信号质量。
2025-07-31 14:03:28 282KB 椭圆函数 低通滤波器 电子竞赛
1
内容概要:本文详细介绍了如何在FPGA上使用Verilog实现N级CIC滤波器的设计方法及其在Quartus II 18.0中的应用。首先解释了CIC滤波器的基本结构,即由积分器和梳状滤波器组成,重点在于参数化的Verilog代码实现。文中提供了具体的积分器和梳状滤波器的Verilog代码片段,展示了如何处理符号扩展、延迟线、以及多级级联时的位宽管理等问题。同时,讨论了仿真过程中的一些技巧,如利用Matlab生成测试信号、ModelSim查看频谱变化等。此外,还分享了一些常见的工程实践问题及解决方案,如时钟使能信号同步、复位信号去抖动、数据溢出饱和处理等。 适合人群:具有一定FPGA开发经验,熟悉Verilog语言的硬件工程师和技术爱好者。 使用场景及目标:适用于需要进行采样率转换、抗混叠滤波等应用场景的技术人员。主要目标是帮助读者掌握CIC滤波器的工作原理及其在FPGA上的高效实现方法。 其他说明:文章强调了在实际项目中可能会遇到的问题及解决办法,如Quartus II 18.0的特定设置、资源优化策略等。对于初学者来说,建议先确保功能正确再逐步优化性能。
2025-07-22 20:55:58 305KB FPGA Verilog ModelSim Quartus
1
在信息信号处理过程中,如对信号的过滤、检测、预测等,都要使用到滤波器,数字滤波器是数字信号处理中使用最广泛的一种方法,常用的数字滤波器有无限长单位脉冲响应(IIR)滤波器和有限长单位脉冲响应(FIR)滤波器两种[1]。对于应用设计者,由于开发速度和效率的要求很高,短期内不可能全面了解数字滤波器相关的优化技术,需要花费很大的精力才能使设计出的滤波器在速度、资源利用、性能上趋于较优。而采用调试好的IP核需要向Altera公司购买。本文采用了一种基于DSP Builder的FPGA设计方法,以一个低通的16阶FIR滤波器的实现为例,通过生成的滤波器顶层模块文件与A/D模块文件设计,在联星科技的NC-
2025-06-22 14:05:59 139KB 单片机与DSP
1
射频识别(RFID)技术在无线通信领域中扮演着重要的角色,特别是在UHF频段,它能在几十米的距离内实现数百千比特每秒(kbps)的数据传输速度,这比LF和HF频段的RFID技术具有更远的读取范围和更高的传输速率。UHF RFID阅读器遵循EPC Global C1G2协议,其接收数据速率可高达640 kbps,信号带宽最大不超过1.28 MHz。对于最低40 kbps速率,信号带宽小于250 kHz。因此,设计的信道选择滤波器需要有0.3到1.3 MHz的可调带宽。 信道选择滤波器的主要任务是过滤掉不必要的信号,确保RFID通信的清晰性和稳定性。根据传输掩模规定,相邻信道间的功率差需达到40 dB,这意味着滤波器必须能有效抑制高于本信道40 dB的干扰,同时在两倍频处有超过45 dB的衰减。此外,由于UHF RFID接收机可能面临的多读写器环境和大干扰信号,滤波器必须具备良好的线性度和噪声性能。 文章中采用了运算放大器-RC结构的六阶Chebyshev低通滤波器设计方案。Chebyshev滤波器虽然在通带内的平坦度不及Butterworth滤波器,但其快速的滚降特性有助于实现所需的选择性。滤波器由多个二阶Chebyshev低通滤波节组成,每个二阶滤波节(Biquad)具有特定的传递函数,以实现所需的频率响应。 运算放大器是滤波器设计的关键组件,需要具有至少70 dB的开环增益、大于65 MHz的增益带宽积、65到70 dB的相位裕度以及大于12 V/μs的上升时间。针对输入端的差分信号处理问题,文章提出使用全平衡差动放大器(FBDDA)来构建全差分缓冲器,这解决了单端输入运算放大器的局限性。FBDDA由两级结构组成,包括差分对和共源级,使用PMOS和NMOS管以优化噪声系数和增益。通过调整MOS管的跨导和输出电阻,可以进一步提升运放的性能,并降低噪声。 设计过程中,运算放大器的第一级添加了共模反馈电路,以确保在所有工艺角下都能保持稳定的性能。全差分缓冲器的输出通过负反馈与FBDDA相结合,以实现理想的输入输出关系。通过这样的设计,滤波器能够在满足信道选择性和抑制干扰的同时,确保了良好的线性度和噪声性能。 该设计旨在为UHF RFID阅读器创建一个高效、可靠的信道选择滤波器,以适应复杂无线环境下的高速通信需求。通过六阶Chebyshev滤波器和定制的运算放大器,实现了高性能的信道选择和干扰抑制,确保了RFID系统的稳定性和效率。
2025-05-27 23:02:13 123KB RF|微波
1