这个资源是为了帮助研究人员和开发者在火灾预防和安全监控领域取得突破而设计的。本资源包含以下几个关键部分: 1、火焰数据集:精心策划和注释的高质量火焰图像集,覆盖了不同类型和大小的火焰场景。这个数据集对于训练和测试火焰检测算法至关重要。 2、代码:完整的YOLOv8算法实现代码,针对火焰检测进行了优化。代码清晰、注释详细,易于理解和定制。 3、GUI界面:为了更方便地使用和展示火焰识别模型,我复现了一个直观的图形用户界面(GUI)。这个界面不仅易于操作,还可以实时展示检测结果。 4、内置训练好的模型文件:为了让用户能够即刻使用该工具,我提供了一个已经在火焰数据集上训练好的YOLOv8模型。这个模型经过精心训练,具有高精度和良好的泛化能力。 此外,我还提供了详细的安装和使用指南,帮助您轻松地部署和运行这个系统。无论您是在进行学术研究,还是在开发商业应用,这个资源都将是您不可或缺的工具。
2025-04-22 17:22:35 256.87MB 数据集
1
MATLAB中BP神经网络的火焰识别是一个利用人工神经网络理论建立起来的模拟生物神经网络处理信息的模型,广泛应用于模式识别、信号处理、数据分类等多个领域。BP神经网络(Back Propagation Neural Network)是一种按误差逆传播算法训练的多层前馈神经网络,能够进行复杂函数逼近,学习和存贮大量的输入-输出模式映射关系,无需精确的数学描述。 在火焰识别的应用场景中,BP神经网络可以通过学习大量的火焰图像特征来实现对火焰的准确识别。该过程通常包括以下几个步骤: 1. 数据采集:首先需要收集足够数量的火焰图像数据作为训练样本。这些数据可以是不同环境、不同光照、不同火焰形状和大小的图片。 2. 图像预处理:对收集到的图像进行预处理操作,包括灰度化、滤波去噪、归一化、边缘检测等,以降低图像的复杂度并提取出有用的特征。 3. 特征提取:从预处理过的图像中提取火焰的特征,如颜色、纹理、形状等。这些特征将作为神经网络的输入。 4. 网络训练:使用提取的特征和对应的标签(是否为火焰)来训练BP神经网络。网络将通过不断调整内部权重和偏置,以最小化输出和目标之间的误差。 5. 模型评估:通过测试集评估训练好的BP神经网络模型的性能,确保其具有良好的泛化能力。 6. 实时识别:将训练好的模型部署到实际应用中,对实时采集的图像进行处理,判断是否存在火焰并作出相应反应。 在MATLAB环境中,可以利用其提供的神经网络工具箱(Neural Network Toolbox)来实现BP神经网络的构建、训练和测试。MATLAB的图形用户界面(GUI)功能则能够使用户更直观地进行操作,如调整网络结构、设置参数等,从而更高效地完成火焰识别系统的开发。 此外,MATLAB还提供了图像处理工具箱(Image Processing Toolbox),支持各种图像处理函数和工具,极大地简化了图像预处理和特征提取的复杂度。这些工具箱的协同使用,使得MATLAB成为进行图像识别和模式识别研究和应用开发的理想平台。 MATLAB中BP神经网络的火焰识别是一个结合了图像处理技术和机器学习算法的综合性技术,能够有效地应用于火焰检测和监控领域,提高火灾预防和应急处理的智能化水平。
2025-04-14 19:16:09 7.62MB matlab
1
火焰识别 + yolov8 + 测试视频 + 预测权重.pt 资源包含: 1.预测权重 2.测试视频 直接下载后放入yolov8官方工程中,直接执行官方detect即可进行火焰识别
2024-04-23 19:23:17 91.76MB 目标检测 YOLO 火焰识别 计算机视觉
1
教程请参考:https://blog.csdn.net/Little_Carter/article/details/131387425 欢迎浏览我的最新资源,这个全面的资源是为了帮助研究人员和开发者在火灾预防和安全监控领域取得突破而设计的。本资源包含以下几个关键部分: 1、火焰数据集:精心策划和注释的高质量火焰图像集,覆盖了不同类型和大小的火焰场景。这个数据集对于训练和测试火焰检测算法至关重要。 2、代码:完整的YOLOv8算法实现代码,针对火焰检测进行了优化。代码清晰、注释详细,易于理解和定制。 3、GUI界面:为了更方便地使用和展示火焰识别模型,我复现了一个直观的图形用户界面(GUI)。这个界面不仅易于操作,还可以实时展示检测结果。 4、内置训练好的模型文件:为了让用户能够即刻使用该工具,我提供了一个已经在火焰数据集上训练好的YOLOv8模型。这个模型经过精心训练,具有高精度和良好的泛化能力。 此外,我还提供了详细的安装和使用指南,帮助您轻松地部署和运行这个系统。无论您是在进行学术研究,还是在开发商业应用,这个资源都将是您不可或缺的工具。期待您的下载和反馈!
2023-11-28 09:46:03 258.42MB 人工智能 火焰识别 Python 目标检测
1
该课题为火焰烟雾检测系统。包括2个部分,分别是利用颜色识别定位火焰,以及利用边缘检测方法来定位烟雾,都是基于视频的检测,含有可视化GUI界面设计。代码通俗易懂。
1
基于PaddleDetection中SSD算法实现的火焰识别检测源码+数据集+训练好的模型 配置文件都配置好 数据集都配置好,有数据配置脚本,执行一下即可。 训练好的模型,数据集 备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
火灾检测预警_火焰识别检测数据集(课程作业、设计、比赛、实际项目所用) 【实际项目应用】: 火灾监控检测预警系统、智能安防火焰检测告警系统、火灾预警等 【数据集说明】: 火焰识别检测数据集,一共5870张,该数据集是博主做“厂房火灾预警监控摄像头”项目所用,数据标注精准,目标分布均匀,背景多样化,算法拟合较好,适合科研实验、实际项目用。 数据集标签包含voc(xml)、yolo(txt)、json三种格式。多种目标检测算法可直接使用。 【备注】所有上传数据都是博主实际项目使用或者实验demo使用,只传高质量数据,拒绝劣质数据,请放心下载使用,有问题可以留言私信于我。
火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别火焰识别火焰识别火焰识别火焰识别火焰识别火焰识别火焰识别火焰识别火焰识别火焰识别火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型火焰识别ONNX模型
2022-08-11 21:05:41 28.09MB 火焰识别ONNX模型 onnx 模型 火识别
1
火焰识别 火灾检测 matlab的图形处理 得到火焰
2022-07-14 20:06:26 2.02MB 火焰
火焰识别 火灾检测 matlab的图形处理 得到火焰的GUI界面
2022-07-14 20:06:19 9.2MB 后延