内容概要:本文档详细介绍了基于LSSVM(最小二乘支持向量机)和ABKDE(自适应带宽核密度估计)的多变量回归区间预测项目的实现过程。项目旨在通过结合LSSVM与ABKDE,提升回归模型在处理高维、非线性及含噪声数据时的表现。文档涵盖了项目背景、目标、挑战及解决方案,重点阐述了LSSVM与ABKDE的工作原理及其结合后的模型架构。此外,文中提供了Python代码示例,包括数据预处理、模型训练、自适应带宽核密度估计的具体实现步骤,并展示了预测结果及效果评估。; 适合人群:具备一定机器学习和Python编程基础的研究人员和工程师,特别是对支持向量机和核密度估计感兴趣的从业者。; 使用场景及目标:①处理高维、非线性及含噪声数据的多变量回归问题;②提升LSSVM的回归性能,改善预测区间的准确性;③应用于金融预测、医疗诊断、环境监测、市场营销和工业工程等领域,提供更精确的决策支持。; 其他说明:项目不仅关注回归值的预测,还特别注重预测区间的确定,增强了模型的可靠性和可解释性。在面对复杂数据分布时,该方法通过自适应调整带宽,优化核密度估计,从而提高模型的预测精度和泛化能力。文档提供的代码示例有助于读者快速上手实践,并可根据具体需求进行扩展和优化。
2025-07-13 22:23:21 43KB Python 机器学习 LSSVM 多变量回归
1
内容概要:本文详细介绍了高斯过程回归(GPR)在时间序列区间预测中的应用。首先阐述了时间序列预测的重要性和挑战,特别是提供预测区间的必要性。接着深入讲解了GPR作为一种非参数化的贝叶斯方法的特点,强调其在处理小样本数据和复杂非线性关系方面的优势。文中通过具体的Python代码展示了如何使用Scikit-learn库实现GPR模型,包括数据准备、模型训练、预测以及结果可视化。特别关注了核函数的选择和超参数优化对模型性能的影响,并讨论了GPR在不同类型时间序列数据(如带有周期性、趋势性或突变点的数据)中的适应性和局限性。 适合人群:对机器学习尤其是时间序列分析感兴趣的科研人员、数据科学家和技术爱好者。 使用场景及目标:①理解和掌握GPR的基本原理及其在时间序列预测中的应用;②学会使用Python实现GPR模型并进行区间预测;③探索不同类型的核函数对预测效果的影响。 其他说明:虽然GPR在短中期预测中表现出色,但对于大规模数据集和长时间跨度的预测可能存在计算效率的问题。此外,合理的核函数选择对于提高预测精度至关重要。
2025-07-07 16:02:26 495KB
1
内容概要:本文介绍了如何使用Matlab实现Transformer-ABKDE(Transformer自适应带宽核密度估计)进行多变量回归区间预测的详细项目实例。项目背景源于深度学习与传统核密度估计方法的结合,旨在提升多变量回归的预测精度、实现区间预测功能、增强模型适应性和鲁棒性,并拓展应用领域。项目面临的挑战包括数据噪声与异常值处理、模型复杂性与计算开销、区间预测准确性、模型泛化能力以及多变量数据处理。为解决这些问题,项目提出了自适应带宽机制、Transformer与核密度估计的结合、区间预测的实现、计算效率的提高及鲁棒性与稳定性的提升。模型架构包括Transformer编码器和自适应带宽核密度估计(ABKDE),并给出了详细的代码示例,包括数据预处理、Transformer编码器实现、自适应带宽核密度估计实现及效果预测图的绘制。; 适合人群:具备一定编程基础,特别是熟悉Matlab和机器学习算法的研发人员。; 使用场景及目标:①适用于金融风险预测、气象预测、供应链优化、医疗数据分析、智能交通系统等多个领域;②目标是提升多变量回归的预测精度,提供区间预测结果,增强模型的适应性和鲁棒性,拓展应用领域。; 其他说明:项目通过优化Transformer模型结构和结合自适应带宽核密度估计,减少了计算复杂度,提高了计算效率。代码示例展示了如何在Matlab中实现Transformer-ABKDE模型,并提供了详细的模型架构和技术细节,帮助用户理解和实践。
2025-05-27 08:44:07 38KB Transformer 多变量回归 MATLAB
1
matlab实现光谱的包络线去除程序。很好的满足了光谱处理的要求。
2024-06-26 16:04:21 4KB
基于高斯过程回归(GPR)时间序列区间预测,matlab代码,单变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和区间覆盖率和区间平均宽度百分比等,代码质量极高,方便学习和替换数据。
2024-04-18 16:11:03 25KB matlab
1
以预测矿井瓦斯相对涌出量为研究目的,运用缓冲算子理论,建立了灰色系统模型,并将该模型应用到某矿井的瓦斯涌出量预测分析中,对该矿历年来相对瓦斯涌出量进行了灰色生成,建立了灰色预测,对照精度检验可知,达到了一级精度,预测结果可靠。
2024-02-28 16:16:11 354KB 灰色理论 缓冲算子 瓦斯涌出量 GM(1
1
以预测矿井瓦斯相对涌出量为研究目的,通过灰色系统的建模、关联度分析及残差辨识为基础,建立了灰色系统理论模型,并将该模型应用到某矿瓦斯涌出量预测分析中,对该矿历年来相对瓦斯涌出量进行了灰色生成,建立了灰色预测系统;由后验差检验结果、对照精度检验等级可知,灰色系统预测矿井瓦斯涌出量的拟合精度好,预测结果正确可靠,反映出了矿井瓦斯涌出量的客观存在与发展态势.
2024-02-28 16:00:32 95KB 灰色理论 瓦斯涌出量 GM(1 1)模型
1
文中针对时间因素对GM(1,1)模型预测造成的影响引入了时间加权-新陈代谢GM(1,1)模型,并将该模型应用于建筑物的沉降预测,结果证明时间加权-新陈代谢GM(1,1)模型比传统的GM(1,1)模型的预测精度高,具有较高的参考价值。
2024-02-28 15:49:35 655KB 沉降观测 灰色理论 沉降预测 GM(1
1
【预测模型】灰色理论GM模型地区PM2.5预测【含Matlab源码 499期】.zip
2023-03-06 09:09:19 74KB
1
针对高风险背景下的混沌时间序列区间预测问题,首次将回声状态网络与一致性预测框架相结合,提出基于两者的混沌时间序列区间预测算法.该算法将回声状态网络的拟合能力与一致性预测区间的可靠性相结合,使得最终的预测区间包含被预测值的频率或概率可以被显著性水平参数所控制,即预测区间具有极高的可信度.同时,由于使用岭回归学习回声状态网络的输出权重,使得算法在学习阶段对样本的留一交叉估计可以被快速地计算,极大地缩短了一致性预测的学习时间.理论分析表明,所提出算法的时间复杂度等价于原始回声状态网络算法的时间复杂度,即算法具有较快的计算速度.实验表明,所提出算法能够较精确地控制预测的错误率,对噪声具有鲁棒性,且预测区间比基于高斯过程的预测区间更加准确地刻画了被预测值的波动范围.
1