此为深超2.4玻璃+8080并口+ST7789V2的测试程序(内带初始化),需要学习点屏测试可直接下载编译烧录使用 【核心代码】 └── lcmconfig.h 接口及分辨率 └── crosstalkPic.c 图片 └── lcmdisplay.C 主函数 注:另需要串口4SPI的也私信或留言
2025-07-09 18:09:51 21KB
1
HT1621芯片测试程序,测试HT1621的每一个字段,依次点亮
2025-06-14 23:20:39 5KB HT1621
1
标题中的“这个是灯环闪烁stc8H8K64U点亮ws2812”指的是一个项目,其中使用了STC8H8K64U单片机来控制WS2812 LED灯环实现闪烁效果。STC8H8K64U是一款8位单片机,拥有丰富的I/O端口和较高的处理能力,适用于各种嵌入式控制系统,如照明、智能家居等。而WS2812是一种智能像素LED灯,它内置驱动电路和控制逻辑,可以实现单线串行通信,控制每个LED的颜色和亮度。 在这样的项目中,首先我们需要了解STC8H8K64U单片机的基本操作,包括编程环境(如Keil uVision)、编程语言(通常为C或汇编)、以及单片机的中断、定时器和I/O口的操作。为了控制LED灯环,单片机需要通过特定的时序发送数据到WS2812,这通常涉及到低电平延时的精确控制,因此对单片机的定时器功能有较高要求。 WS2812 LED灯环的特性决定了我们需要掌握它的通信协议。这种协议是单线的,每个LED灯都有自己的数据接收和存储单元,能够根据接收到的数据调整自身的颜色和亮度。在编程时,我们需要按照特定的顺序和格式将RGB颜色值编码成数据流,然后通过单片机的I/O口逐个发送给每个LED。 在实际应用中,可能还会涉及电源管理、信号调理(如上拉电阻的选择)和硬件设计,确保单片机与WS2812之间的连接稳定可靠。此外,为了实现灯环的闪烁效果,我们需要设置定时器来周期性地改变发送到LED的数据,从而实现动态变化的视觉效果。 在压缩包“刘泽凯物联网二班”中,可能包含了该项目的源代码、电路图、实验报告等资源。通过查看这些文件,我们可以更深入地学习如何使用STC8H8K64U单片机控制WS2812灯环,理解其实现闪烁效果的具体步骤和技术细节。同时,这也是一个物联网应用的实例,因为通过单片机控制的LED灯环可以作为物联网设备的一部分,与其他智能设备交互或响应远程指令。 这个项目涵盖了单片机编程、数字信号处理、嵌入式系统设计以及物联网应用等多个IT领域的知识点,对于想要提升这方面技能的学习者来说,是一个非常有价值的实践案例。通过分析和学习这个项目,不仅可以提高编程能力,还能增强硬件设计和系统集成的实践经验。
2025-06-07 15:57:34 10.05MB
1
点亮数码管:数字电子实验探索》 在本科阶段的数字电子实验中,"点亮一个数码管"是一项基础且重要的任务。此实验旨在提升学生对数字电路的理解与应用能力,涵盖了Multisim软件的使用、逻辑电路设计以及硬件调试等多个方面。通过这次实验,学生不仅能掌握基本的电路设计技能,还能深化对逻辑表达式与逻辑电路转换的理解,并学习如何通过阅读技术文档解决实际问题。 实验主要使用的工具包括Multisim 14.1 Education Edition软件用于电路设计与仿真,Xilinx ISE用于FPGA编程,以及硬件平台Digilent Basys 3。Basys 3是一款基于FPGA的开发板,它配备了四位拨码开关SW3~SW0作为输入,以及一个七段式数码管作为输出显示,为学生提供了一个直观的数字逻辑操作平台。 实验的核心任务是设计一个电路,使得拨码开关输入的BCD码能够正确地在数码管上显示出对应的数字。BCD码是一种二进制编码方式,用四位二进制数来表示一位十进制数。当输入为0-9时,数码管应显示相应的数字,而输入为A-F时,数码管应熄灭。为了实现这一功能,首先需要画出每个数字的真值表,然后根据真值表写出输出CA到CG的逻辑式,并进一步简化逻辑表达式。 在Multisim中,学生可以利用逻辑门(如与门和或门)搭建电路,通过仿真验证设计的正确性。化简后的逻辑式可以直接在软件中构建逻辑电路,这一步骤锻炼了学生将理论知识转化为实际操作的能力。同时,将设计导入FPGA,通过USB数据线连接到Basys 3,完成硬件实现,这一过程需要学生熟悉硬件平台的使用。 实验步骤中,每个数字的显示都需要对应输入的BCD码进行转换和驱动数码管。实验结果显示,所有输入的数字均能正确显示,验证了设计的正确性。例如,输入0000时,数码管显示数字0,而输入1010(对应十进制10)时,数码管应全灭。 然而,实验过程中可能会遇到问题,如输出信号的取反错误或者数码管异常亮起。这些问题需要通过分析电路,查找可能的逻辑错误,甚至重新化简和连接电路来解决。例如,若发现本应熄灭的数码管亮起,可能是因为输出的非零状态被误认为是零状态,这时可能需要调整逻辑门类型,如将或门改为或非门。此外,连接数码管的公共端(如AN0)也需要正确设置,以确保数码管各段能按需点亮或熄灭。 实验的最后部分是思考题,鼓励学生反思实验过程中的问题,加深对逻辑电路设计原理的理解。通过这样的实践,学生不仅能学会解决问题,也能培养良好的团队合作和交流能力,这对于未来从事电子工程或其他相关领域的工作至关重要。 "点亮一个数码管"的实验是一个全面的训练,涵盖了数字电路的基础知识、软件应用、硬件操作和问题解决,为学生的专业发展奠定了坚实的基础。通过这次实验,学生将更深入地理解数字电子世界的逻辑运作,为后续的复杂电路设计和系统开发做好准备。
2025-04-18 03:51:24 1.44MB
1
在本项目中,我们主要探讨的是如何利用STM32CubeIDE在STM32F4微控制器上通过DMA和PWM技术来驱动WS2812灯带。STM32F4系列是基于ARM Cortex-M4内核的高性能微控制器,常用于嵌入式硬件设计,而STM32CubeIDE是ST Microelectronics提供的集成开发环境,集成了代码生成、调试和配置等功能,使得开发过程更为便捷。 我们需要了解STM32F4的定时器(TIM)功能。在这个案例中,使用了TIM2,这是一个通用定时器,可以配置为PWM模式。PWM(脉宽调制)是一种常见的控制LED亮度或驱动其他设备的方法,通过改变脉冲宽度来调整输出电压的平均值。双缓冲机制则是在TIM2内部,允许我们在不中断PWM输出的情况下更新定时器的参数,提高了系统性能。 接下来,DMA(直接内存访问)在其中起到了关键作用。DMA允许数据在存储器和外设之间直接传输,无需CPU介入,从而减轻了CPU负担并提高了效率。在驱动WS2812灯带时,DMA可以用来连续发送数据流到TIM2,以控制LED的亮灭顺序和颜色。 WS2812是一款常见的RGB LED灯带,每个LED包含红、绿、蓝三种颜色,可以通过单线接口进行串行通信。这种串行通信协议要求严格的时间精度,因此需要STM32的定时器精确地生成特定的时序。WS2812的通信协议是基于定时器中断和DMA的结合,确保每个颜色数据的正确传输。 在STM32CubeIDE中,我们需要配置TIM2的参数,包括预分频器、自动重载值等,以便设置合适的PWM周期。同时,要开启TIM2的DMA请求,将数据从内存传输到定时器的捕获/比较寄存器。此外,还需要编写DMA配置代码,设置源地址、目标地址、传输长度以及传输完成的中断处理。 在驱动WS2812灯带时,我们需要预先计算好每个LED的颜色值,并将其按顺序排列在内存中。这些颜色值会被DMA读取并按照WS2812的协议序列化后输出。由于WS2812要求数据在极短的时间内连续发送,所以需要精确的时序控制,这正是STM32F4的定时器和DMA功能的优势所在。 总结来说,这个项目涉及了STM32F4的TIM2定时器配置、PWM输出、DMA数据传输和WS2812灯带的串行通信协议。通过理解这些知识点,我们可以实现用STM32CubeIDE在STM32F4微控制器上高效、精确地控制RGB LED灯带,创造出各种动态灯光效果。
2025-03-31 11:12:33 4.66MB stm32 arm 嵌入式硬件
1
标题中的“dome-WS2812-led-test.rar”是一个项目文件,它涉及使用STM32F4微控制器通过DMA1和DMA2数据传输控制器来控制WS2812 RGB LED灯带的测试。STM32F4是STMicroelectronics公司生产的一款高性能ARM Cortex-M4内核的微控制器,广泛应用于嵌入式系统设计。WS2812是一种常见的智能LED灯,它集成了RGB LED、驱动器和控制逻辑,可以通过单线串行接口进行通信,实现色彩和亮度的精确控制。 在描述中,“STM32F4 DMA1+DMA2 全部数据流通道测试,点亮灯带WS2812”进一步强调了项目的核心内容,即利用STM32F4的两个DMA(直接存储器访问)控制器的全部数据流通道来驱动WS2812灯带。DMA允许微控制器在执行其他任务的同时,高效地将数据从一个内存位置传输到另一个位置,减少了CPU的负担,尤其适合处理连续的数据流,如LED显示控制。 在标签“STM32”和“WS2812”中,我们可以推断出项目主要关注的是如何在STM32F4平台上,通过编程实现对WS2812灯带的高效控制。STM32系列微控制器具有丰富的外设接口,包括多个DMA通道,可以实现高效的数据传输,而WS2812则要求精确的时序控制,因此使用DMA能很好地满足这一需求。 压缩包内的文件“dome_WS2812_led_test”很可能包含项目的源代码、配置文件、工程文件等,用于实现上述功能。这些文件可能包括C或C++源代码文件,其中包含了初始化DMA设置、配置定时器以产生正确的时序信号、以及处理WS2812数据传输的函数。此外,可能还有Makefile或IDE工程文件,用于编译和调试代码。 在这个项目中,开发者可能面临以下挑战: 1. **DMA配置**:理解STM32F4的DMA控制器架构,包括设置传输模式、源和目标地址、传输长度、优先级等。 2. **时序控制**:WS2812需要严格的时序,数据必须在特定的时间窗口内发送,这通常需要通过微控制器的定时器来实现。 3. **数据编码**:WS2812的数据编码特殊,每个像素由24位数据组成,顺序为G-R-B,且每个颜色分量前有起始位和停止位,需要正确编码和传输。 4. **并行与串行转换**:由于STM32F4通常有并行接口,但WS2812需要串行数据,因此需要通过软件或硬件设计实现这种转换。 通过这个项目,学习者不仅可以掌握STM32F4微控制器的使用,还能深入了解DMA的工作原理,以及如何通过DMA控制外部设备。同时,对于电子爱好者和嵌入式开发者来说,这也是一个很好的实践案例,展示了如何利用微控制器的高级特性来解决实际问题。
2024-07-03 15:18:23 4.77MB STM32 WS2812
1
用P1口做输出口,接八只发光二极管。编写程序,使发光二极管循环点亮,循环点亮时间间隔为1秒,该时间间隔用定时器中断实现。/ INT0 接单次脉冲输出,每当有外部中断信号时,发光二极管循环方向取反。
2024-04-01 16:53:30 69KB
1
简介 这篇文章介绍如何使用CubeMx创建一个简单的LED工程,该工程是一个MDK工程,当然也可以使用CubeMx创建基于其他编译器的工程。作为入门,我们的第一个工程仅点亮一个LED。并且在这个工程上进行修改,增加一个按键功能,展示CubeMx修改工程的功能。 硬件准备 笔者使用正点原子战舰V3开发板,使用任何主控是STM32的硬件设备并且带有GPIO控制的LED和按键,就可以,硬件上没有什么限制。 软件准备 STM32CubeMx Keil MDK,IAR或类似的编译环境 实际操作部分 1.生成工程,并点亮LED 2.修改现有工程,将GPIO输入功能,也就是按键功能加入工程 第一部分 新建
2023-04-07 22:17:01 1.07MB gpio stm32 安装
1
2. 使用寄存器点亮一个LED.zip
2023-04-06 21:10:22 54KB 2. 使用寄存器点亮一个LED.
1
使用寄存器点亮一个LED-STM32F407
2023-04-06 21:08:10 25KB 407
1