在IT行业中,数据集是研究、开发和训练人工智能模型的基础,尤其在计算机视觉领域,高质量的数据集至关重要。本文将深入探讨“煤矿井下安全帽数据集”这一特定主题,以及其在标注后的应用价值。 我们要理解什么是数据集。数据集是一组有组织的数据集合,通常用于训练机器学习或深度学习模型。在这个案例中,“煤矿井下安全帽数据集”包含了大量矿工在井下工作时佩戴安全帽的图像。这些图像可能是由专业摄影师拍摄,或者通过监控摄像头捕获,确保了场景的真实性和多样性。 标注是数据集处理的关键步骤,特别是对于计算机视觉任务。在这个数据集中,每张图片都已进行了标注,这意味着专业人士或算法已经对图像中的安全帽位置进行了精确的标记,例如使用边界框(bounding box)来框出安全帽的位置。这样的标注信息使得模型能够理解安全帽的形状、位置和上下文环境,为后续的训练和分析提供精确的输入。 这个数据集的用途广泛,主要集中在以下几个方面: 1. 监督学习:数据集中的标注图像可以作为监督信号,帮助训练图像识别模型,特别是目标检测模型。模型会学习到安全帽的特征,并在未来遇到类似图像时自动识别出安全帽。 2. 安全监控:在煤矿作业中,确保工人佩戴安全帽是重要的安全措施。这个数据集可以用于开发实时监控系统,通过检测井下工人是否佩戴安全帽,及时提醒未遵守规定的操作,提升作业安全性。 3. 异常检测:通过对正常情况下的安全帽佩戴进行学习,模型可以识别出异常情况,如未戴安全帽、安全帽脱落等,进一步加强安全监管。 4. 行为分析:结合其他传感器数据,如工人位置、活动轨迹等,可以进行行为分析,了解工人的工作习惯,优化作业流程,预防安全事故。 5. 模型评估与比较:这个数据集也可以作为基准,用来评估和比较不同算法在目标检测任务上的性能,推动技术进步。 “煤矿井下安全帽数据集”在标注后成为了一个宝贵的资源,不仅可用于训练和测试图像识别算法,还能在实际工业环境中实现智能安全监控,提高煤矿作业的安全水平。通过持续的数据收集和模型优化,我们可以期待未来在安全帽检测以及其他相关领域看到更高效、更智能的解决方案。
2025-10-13 20:52:57 179.65MB 数据集
1
煤矿井下作业环境复杂,存在各种潜在的安全风险,其中矿井下作业人员的安全帽佩戴情况是保障安全的重要一环。为了提升煤矿安全管理的智能化水平,科研人员创建了专门针对煤矿井下场景的数据集,特别是针对煤矿工人佩戴安全帽的情况,以及钻场钻机设备的监测。这一数据集采用了Pascal VOC格式与YOLO格式两种通用的数据标注形式,包含了超过七万张标注图片,旨在通过计算机视觉技术,特别是深度学习方法,实现对矿井下作业场景中安全帽佩戴情况的自动检测,以及钻机卡盘等关键设备的监测。 该数据集包含了70677张图片,每张图片均配有对应的标注信息,标注文件包括VOC格式的xml文件和YOLO格式的txt文件。图片分辨率统一为1280x720,覆盖了五种类别的目标,分别为安全帽、煤矿工人、夹持器、钻杆以及钻机卡盘。这些类别分别用中文和英文表示,其中“anquanmao”对应“安全帽”,“gongren”对应“煤矿工人”,“jiachiqi”对应“夹持器”,“zuangan”对应“钻杆”,“zuanjikapan”对应“钻机卡盘”。每个类别都进行了详细的矩形框标注,分别统计出各类别在数据集中所占的框数。例如,“安全帽”标注的框数为31118个,“煤矿工人”标注的框数为39479个,其他类别也有相应的标注数量。 在标注过程中,科研人员使用了名为labelImg的标注工具,这是一种广泛应用于目标检测任务的图像标注工具。对于标注规则,采用了矩形框标注方法,简单直观地对目标类别进行了框选,框选的矩形框精确地覆盖了目标对象。 此外,数据集的制作者也强调了数据集的使用目的,即仅作为提供准确合理标注图片的工具,不包含对最终训练模型或权重文件精度的任何保证。虽然不提供任何关于模型精度的保证,但是数据集的详细和规范的标注为研究人员提供了一个高质量的研究基础,可以应用在深度学习、计算机视觉以及自动化检测等多个领域,以改善矿井作业的安全性,从而有效地预防矿难事故的发生。 重要的是,对于此类数据集的使用,研究者和开发者应当遵守相关的法律和道德标准,确保数据集的应用不会侵犯个人隐私和知识产权,并且不应对真实世界中的作业安全产生负面影响。实际应用中,这套数据集结合相应的图像识别与检测算法,可以大大降低人工监督的工作量,为煤矿井下的作业安全提供实时的智能监测支持。 与此同时,这套数据集的发布也反映了当前机器学习、计算机视觉技术在工业安全领域的应用趋势。随着技术的持续进步,未来有望在矿井监控、自动化巡检、异常事件预测等多方面发挥更大作用,提高矿井工作的自动化与智能化水平,从根本上保障矿工的安全和提高矿井生产效率。
2025-09-11 14:10:00 1.15MB 数据集
1
针对传统图像去噪方法易使图像模糊和丢失边缘信息等问题,根据煤矿井下视频图像光度不均、噪声较大的特点,提出采用基于改进的简化脉冲耦合神经网络对煤矿井下图像进行去噪处理。对简化的脉冲耦合神经网络模型中神经元连接强度β的选取方法进行改进,使β依赖于图像像素灰度值,从而更加有效地去除椒盐噪声;对动态门限的衰减时间常数αE的选取方法进行改进,使αE依赖阈值输出的放大系数vE,减少整个模型的参数,并通过实验选取vE值。实验结果表明,与传统的中值滤波、均值滤波方法相比,基于改进的简化脉冲耦合神经网络的去噪方法不仅有效去除了矿井图像的椒盐噪声,而且很好地保持了图像的边缘等细节特征。
1
按照矿山物联网统一时空模型的要求,开发了基于GIS的煤矿井下电力监控管理系统。该系统建立了各配电点和供电子系统设备的内部结构模型及其相互联系的地理拓扑模型,将井下电力系统CAD图转换为GIS拓扑图,将图形软件和数据库相结合来描述和管理各种电力设备的参数属性及几何拓扑关系;采用多世界空间关联表达,实现了井下配电网络及其资产"一张图"管理。
2024-07-07 20:20:58 624KB 井下电力监控 GIS 数据建模 资产管理
1
研制了1套静止无功发生器(SVG)装置,使用基于瞬时无功功率理论的方法进行无功电流检测。首先分析了SVG的控制策略,采用直接电流控制三闭环控制结构,在此基础上利用SVPWM调制技术产生所需要的脉冲驱动信号。然后提出了SVG的软硬件设计方案,并介绍了SVG保护系统的设计方法。
1
针对现代化煤矿井下采区排水泵房自动化的发展趋势,陈四楼煤矿提出了自动化排水泵房随动视频技术方案,重点对随动视频技术的性能特点进行了研究,分析了"排水系统控制技术、机械设计关键技术、工业电视系统技术"的性能结构及功能特点,并在实际生产中得到了应用,指出了煤矿井下排水泵房随动视频技术在现代化矿井综合自动化建设中的重要性。
2023-12-01 20:57:01 326KB 煤矿生产 排水泵房 随动视频技术
1
为提高煤矿排水效率,降低运行成本,结合新河煤矿的实际情况,在改造原有管路、完善传感器和执行机构的基础上,构建了基于西门子PLC的自动排水控制系统架构。系统采用就地和地面调度2级控制方式,编写了数据采集、显示和控制的PLC程序,实现了就地、手动、远控和自动4种控制模式。实践表明,系统运行稳定、可靠。
2023-12-01 20:54:48 533KB 行业研究
1
针对煤矿井下人工值守排水系统的弊端,对排水系统进行优化,实现自动化排水;根据QBZ系列起动器的电气原理,采用液位开关检测水位的变化,不仅实现了通过水位变化自动控制水泵的启停,而且特殊情况时能自动报警且继续排水,对水泵等机电设备提供了有效的保护。
1
为提高煤矿井下排水自动化水平,采用SIEMENS PLC、IFIX4.5组态软件和工业以太网通信技术相结合,研发了煤矿井下自动化排水系统,并利用STEP7编程软件设计水泵控制的梯形图,可实现井下水泵、闸阀及相关设备自动控制等功能。工业以太网通信连接实时性能较好,数据传输率很高。采用IFIX4.5组态软件编写的监控程序具有功能完善、操作简便、可视性好、人机对话功能强等优点。
2023-12-01 20:51:37 879KB 行业研究
1
为实现煤矿井下排水系统的无人值守,设计并实施了涵盖仪表、控制系统的自动化改造;并针对现场两仓三泵运行模式制定了自动控制策略;利用峰谷电价差优化运行模式,大大降低了系统能耗,实现了减员增效。
2023-12-01 20:49:52 212KB 行业研究
1