Python网络爬虫实习报告内容知识点: 一、选题背景 在当今信息时代,网络爬虫技术在数据挖掘、信息检索等领域扮演着重要角色。它能够高效地从互联网上抓取数据,为各种分析工作提供数据支持。鉴于其在信息处理中的重要性,对网络爬虫技术的学习和实践具有实际意义和应用价值。 二、爬虫原理 网络爬虫是一种按照既定规则自动抓取网页内容的程序。它模拟浏览器操作,通过发送HTTP请求获取网页数据,解析后提取所需信息,同时遵循robots.txt协议,尊重网站爬取规则。 三、爬虫历史和分类 网络爬虫的发展经历了从简单的基于HTTP请求的爬虫,到利用多种技术进行分布式爬取的高级爬虫。按照爬取策略,爬虫大致可以分为聚焦爬虫和通用爬虫。聚焦爬虫针对特定的主题或网站进行爬取,而通用爬虫则覆盖更广,目标是尽可能多的获取网站数据。 四、常用爬虫框架比较 Scrapy框架:成熟的高性能爬虫框架,支持各种类型的网站。Scrapy自带数据提取器和数据管道,适合开发大型爬虫项目。 Crawley框架:轻量级爬虫框架,支持异步处理,适合用于数据挖掘和小型项目开发。 Portia框架:面向非专业开发者的可视化爬虫框架,通过图形界面让用户选择要爬取的网页元素,适合快速开发。 newspaper框架:专注于新闻内容提取的框架,能够方便地从网页中提取文章文本、图片及视频链接等。 Python-goose框架:能够提取网页中的文章内容、图片、嵌入视频等丰富信息,适用于内容丰富的网站数据抓取。 五、数据爬取实战(豆瓣网爬取电影数据) 1. 分析网页:获取网页的HTML源代码,并分析其结构,定位电影信息的存储位置。 2. 爬取数据:使用Python的urllib库或requests库获取网页数据,并通过BeautifulSoup或lxml解析库提取电影标题、评分、评论数等数据。 3. 数据整理、转换:将爬取的数据进行清洗和格式化,为后续处理做准备。 4. 数据保存、展示:将清洗后的数据保存到CSV文件或数据库中,并可设计简单的Web界面进行展示。 5. 技术难点关键点:处理网页的动态加载内容、反爬虫机制、数据存储与展示方式等。 六、总结 通过本次实习,我们了解到网络爬虫的工作原理,掌握了使用多种爬虫框架进行数据抓取的技能,并通过实际的项目实战,进一步加深了对网络爬虫应用的理解。实习过程中也遇到了许多技术难题,但在不断探索和实践中,我们最终能够克服这些难题,这对我们未来在数据处理和分析领域的工作将大有裨益。
2025-10-31 14:41:45 187KB
1
1.本项目基于网络开源平台Face++ . API,与Python 网络爬虫技术相结合,实现自动爬取匹配脸型的发型模板作为造型参考,找到最适合用户的发型。项目结合了人脸分析和网络爬虫技术,为用户提供了一个个性化的发型推荐系统。用户可以根据他们的脸型和偏好来寻找最适合的发型,从而更好地满足他们的美容需求。这种项目在美容和时尚领域具有广泛的应用潜力。 2.项目运行环境:包括 Python 环境和Pycharm环境。 3.项目包括4个模块: Face++ . API调用、数据爬取、模型构建、用户界面设计。Face++ . API可检测并定位图片中的人脸,返回高精度的人脸框坐标,只要注册便可获取试用版的API Key,方便调用;通过Selenium+Chrome无头浏览器形式自动滚动爬取网络图片,通过Face++性别识别与脸型检测筛选出用发型模板,图片自动存储指定位置并按性别、脸型序号形式命名。模型构建包括库函数调用、模拟用户面部图片并设定路径、人脸融合。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/132868949
2025-10-31 14:12:44 112.24MB face++ 图像识别 图像处理 人脸识别
1
在教育技术领域,特别是高等教育和在线学习的背景下,大数据分析、自然语言处理、机器学习、数据可视化、爬虫技术以及文本挖掘与情感分析等技术的应用变得越来越广泛。本项目《基于Python的微博评论数据采集与分析系统》与《针对疫情前后大学生在线学习体验的文本挖掘与情感分析研究》紧密相连,旨在优化线上教育体验,并为疫情期间和之后的在线教育提供数据支持和改进方案。 大数据分析作为一种技术手段,通过收集、处理和分析大量数据集,为教育研究提供了新的视角和方法。在这个项目中,大数据分析被用于梳理和解析疫情前后微博平台上关于大学生在线学习体验的评论数据。通过这种方法,研究者能够从宏观角度了解学生的在线学习体验,并发现可能存在的问题和挑战。 自然语言处理(NLP)是机器学习的一个分支,它使计算机能够理解、解释和生成人类语言。在本项目中,自然语言处理技术被用于挖掘微博评论中的关键词汇、短语、语义和情感倾向,从而进一步分析学生在线学习的感受和态度。 机器学习是一种人工智能技术,它让计算机能够从数据中学习并做出预测或决策。在本研究中,机器学习算法被用于处理和分析数据集,以识别和分类微博评论中的情绪倾向,比如积极、消极或中性情绪。 数据可视化是将数据转化为图表、图形和图像的形式,使得复杂数据更易于理解和沟通。在本项目中,数据可视化技术被用于展示分析结果,帮助研究者和教育工作者直观地理解数据分析的发现和趋势。 爬虫技术是一种自动化网络信息采集工具,能够从互联网上抓取所需数据。在本研究中,爬虫技术被用于收集微博平台上的评论数据,为后续的数据分析提供原始材料。 本项目还包括一项针对疫情前后大学生在线学习体验的文本挖掘与情感分析研究。该研究将分析学生在疫情这一特定时期内对在线学习的看法和感受,这有助于教育机构了解疫情对在线教育质量的影响,进而针对发现的问题进行优化和调整。 整个项目的研究成果,包括附赠资源和说明文件,为线上教育体验的优化提供了理论和实践指导。通过对微博评论数据的采集、分析和可视化展示,项目为教育技术领域提供了一个基于实际数据的决策支持平台。 项目成果的代码库名称为“covid_19_dataVisualization-master”,表明该项目特别关注于疫情对教育造成的影响,并试图通过数据可视化的方式向公众和教育界传达这些影响的程度和性质。通过这种方式,不仅有助于教育机构理解并改进在线教育策略,还有利于政策制定者根据实际数据制定更加有效的教育政策。 本项目综合运用了当前教育技术领域内的一系列先进技术,旨在为疫情这一特殊时期下的大学生在线学习体验提供深入的分析和改进方案。通过大数据分析、自然语言处理、机器学习、数据可视化和爬虫技术的综合运用,项目揭示了在线学习体验的多维度特征,并为优化线上教学提供了科学的决策支持。
2025-10-30 22:20:34 132.97MB
1
Python爬虫项目:多平台租房数据采集与可视化分析 这是一个用于爬取链家网、贝壳找房和58同城租房信息的Python项目,提供数据采集、分析及可视化功能。项目支持爬取指定城市的房源信息,包括标题、位置、户型、面积和价格等数据,并自动保存为CSV格式。主要特点包括: 多平台支持:可同时采集链家、贝壳、58同城数据 参数可配置:自定义爬取页数、目标城市 数据处理:数据清洗、合并与分析 可视化支持:Matplotlib、Seaborn等生成图表。
2025-10-27 12:30:56 2.29MB python 爬虫 可视化
1
基于Python的天眼查爬虫,爬取完整的公司数据(可爬需要VIP才能用的邮箱和电话等).zip
2025-10-20 23:58:08 3KB Python项目
1
这是新浪微博爬虫,采用python+selenium实现。 免费资源,希望对你有所帮助,虽然是傻瓜式爬虫,但是至少能运行。同时rar中包括源码及爬取的示例。 参考我的文章: http://blog.csdn.net/eastmount/article/details/50720436 [python爬虫] Selenium爬取新浪微博内容及用户信息 http://blog.csdn.net/eastmount/article/details/51231852 [Python爬虫] Selenium爬取新浪微博客户端用户信息、热点话题及评论 (上) 主要爬取内容包括: 新浪微博手机端用户信息和微博信息。 用户信息:包括用户ID、用户名、微博数、粉丝数、关注数等。 微博信息:包括转发或原创、点赞数、转发数、评论数、发布时间、微博内容等。 安装过程: 1.先安装Python环境,作者是Python 2.7.8 2.再安装PIP或者easy_install 3.通过命令pip install selenium安装selenium,它是自动测试、爬虫的工具 4.然后修改代码中的用户名和密码,填写你自己的用户名和密码 5.运行程序,自动调用Firefox浏览
2025-10-19 16:41:32 111KB python
1
python+urllib+selenium爬取CSDN单个博主的所有博文。步骤: 1.通过selenium获取js动态加载的页数 页数是javascript动态加载,不能直接通过urllib获取。改为通过selenium获取页数。 2.通过urllib获取一页内所有文章的链接 根据页数、链接,获取每一页的文章链接,存入数组。 3.遍历文章链接,获取对应的文章的html文件,写好标题存储起来 请自行阅读代码修改食用
2025-10-19 16:28:56 3KB python 爬虫 csdn
1
JavaScript逆向代码-webpack逆向-七麦
2025-10-19 14:07:50 5.13MB webpack 爬虫
1
爬取东方财富网的股票数据并进行分析
2025-10-02 20:41:34 8KB 爬虫
1
随着金融市场的日益成熟和信息技术的发展,投资者对于及时获取股票市场动态和相关行业新闻的需求日益增长。传统的信息获取方式已经无法满足投资者对于信息速度和质量的要求,因此股票新闻爬虫应运而生。股票新闻爬虫是一种专门用于收集和整理网络上股票市场相关资讯的自动化工具,通过编写特定的程序代码,实现在各大财经网站上自动抓取新闻和数据的功能。 本篇文章主要介绍了一个以Python编写的股票新闻爬虫源码,其应用场景主要是跟踪上市公司动态和行业新闻,以此来辅助投资者做出更为明智的投资决策。Python语言因其丰富的库支持、简洁易懂的语法和强大的数据处理能力,成为开发此类爬虫工具的首选。 Python的爬虫框架很多,包括但不限于Scrapy、BeautifulSoup、Request等,开发者可以根据具体需求选择合适的框架进行开发。以东方财富网为例,爬虫需要能够识别网页的结构,利用Python的库函数定位到新闻内容的具体位置,进而提取标题、发布时间、作者以及新闻正文等关键信息。完成信息抓取后,爬虫通常会将数据进行清洗整理,存储到本地文件、数据库或者直接上传至服务器,为投资者提供实时的数据服务。 值得注意的是,爬虫的开发和使用必须遵守相关网站的服务条款以及国家的网络法律法规。在进行爬虫操作时,应避免对网站造成过大压力,比如设置合理的请求间隔,尊重网站的robots.txt文件设置,不抓取禁止爬取的内容。同时,对于爬取的数据应做好版权保护和隐私保护,避免造成不必要的法律风险。 Python爬虫不仅可以应用于股票新闻的抓取,还可以扩展到其他金融数据的收集,如债券、基金、外汇等市场的相关信息,为用户提供全方位的金融市场资讯服务。另外,通过结合自然语言处理技术,爬虫抓取的数据可以进一步被分析和解读,提供更为深入的投资分析和预测。 一个设计良好的股票新闻爬虫系统可以极大地提高信息获取的效率,为投资者决策提供有力支持。随着技术的不断发展和应用的日益广泛,未来股票新闻爬虫将会有更广阔的应用前景和更大的市场需求。
2025-10-02 20:34:00 7KB Python 股票新闻爬虫 源码
1