逆合成孔径雷达相位补偿技术:NMEA、FPMEA与SUMEA算法解析,逆合成孔径雷达相位补偿,牛顿法最小熵相位补偿(NMEA)、固定点最小熵相位补偿(FPMEA)、同时更新相位补偿(SUMEA) ,逆合成孔径雷达相位补偿; 牛顿法最小熵相位补偿(NMEA); 固定点最小熵相位补偿(FPMEA); 同时更新相位补偿(SUMEA),逆合成雷达相位补偿技术:NMEA、FPMEA与SUMEA比较研究 逆合成孔径雷达(ISAR)是一种高分辨率雷达,广泛应用于目标检测和跟踪。逆合成孔径雷达的相位补偿技术是实现高分辨率成像的关键。该技术能够校正雷达回波信号中由于平台运动或环境变化等因素导致的相位误差,从而提高雷达图像质量。 逆合成孔径雷达相位补偿技术包括多种算法,其中牛顿法最小熵相位补偿(NMEA)、固定点最小熵相位补偿(FPMEA)和同时更新相位补偿(SUMEA)是最为重要的三种算法。这些算法在处理ISAR信号时各有优势,适用的场景也有所不同。 牛顿法最小熵相位补偿(NMEA)算法基于牛顿迭代法,通过迭代过程快速接近最优解。该算法的优点在于收敛速度快,尤其适合于处理那些相位误差较大的情况。NMEA算法的核心在于如何构建和迭代最小化熵的目标函数,这使得它在处理非线性问题时表现出色。 固定点最小熵相位补偿(FPMEA)算法则是以预先设定的固定点作为参考,通过最小化熵函数来获得最优的相位补偿量。FPMEA在算法实现上更为简洁,易于理解和编程。该算法适用于那些相位误差相对稳定,不需要频繁调整固定点的情况。 同时更新相位补偿(SUMEA)算法顾名思义,能够同时对相位误差进行更新补偿。SUMEA算法在每次迭代过程中会同时考虑所有已知的相位误差,因此在多个误差源并存时表现尤为突出。该算法的效率与误差更新的策略密切相关,需要仔细设计迭代过程以避免收敛速度过慢的问题。 逆合成孔径雷达相位补偿技术的研究对于雷达技术领域具有重要意义。随着雷达技术的不断发展,ISAR成像技术在军事和民用领域都有着广泛的应用前景。通过不断优化相位补偿技术,可以有效提高ISAR系统的成像性能,满足日益增长的精确度要求。 逆合成孔径雷达相位补偿技术及其优化的研究文献和资料,涵盖了从基础理论到实际应用的多个层面。这些研究有助于工程师和科研人员深入理解ISAR系统的工作原理,推动了相关技术的进步。例如,文献《逆合成孔径雷达相位补偿技术及其优化》和《关于逆合成孔径雷达相位补偿算法的研究》就提供了深入的技术分析和算法实现细节。 逆合成孔径雷达相位补偿技术的不断改进和优化,对于提高雷达系统的性能具有极其重要的意义。通过应用NMEA、FPMEA和SUMEA等算法,可以显著提升雷达图像的分辨率和准确性,进一步拓展逆合成孔径雷达的应用范围。
2025-05-17 09:59:09 4MB istio
1
MATLAB牛顿法求解非线性方程组 部分源码 function Newton() x0=[0.1;0.5]; x1=x0-inv(myJacobi(x0))*myfun(x0); while norm(x1-x0)>1e-3 x0=x1; x1=x0-inv(myJacobi(x0))*myfun(x0); end x1 end
2023-04-17 19:34:30 664B MATLAB 牛顿法 求解 非线性方程组
1
此代码允许我们生成多项式一参数三次多项式的牛顿法 p(z)= z^3+(c-1)*zc,其中c为参数空间我们首先检查 0 是牛顿法的自由临界点对于多项式 p(z)
2023-03-19 10:00:30 2KB matlab
1
每个代码都可以运行哦 运行环境我的是VC6.0 数值分析C++源码-二分法,迭代法,牛顿法,高斯消元法,高斯先列主元消元法,高斯全主元消元法,标度化列住院消元法,直接三角分解法,道立特分解法,改进的平方根法,平方根法,雅克比法,高斯赛德尔迭代法,牛顿插值法,拉格朗日插值法,最小二乘法,牛顿插值
2023-03-01 14:27:23 2.38MB 数值分析 最小二乘法 迭代法 消元法
1
介绍了牛顿法解算通风网络的迭代数学模型,并针对该数学模型,结合具体实例,用SCILAB进行了快速解算。给出了解算过程及源程序,可为矿井通风的科研、教学以及工程实践提供一种有效的方法。
2023-02-27 15:41:28 133KB 通风网络 牛顿法 SCILAB
1
深度学习数值计算之Hessian矩阵与牛顿法
2023-02-16 21:28:07 264KB 深度学习
1
对于一个多元函数 用牛顿法求其极小值的迭代格式为 其中 为函数 的梯度向量, 为函数 的Hesse(Hessian)矩阵。 上述牛顿法不是全局收敛的。为此可以引入阻尼牛顿法(又称带步长的牛顿法)。 我们知道,求极值的一般迭代格式为 其中 为搜索步长, 为搜索方向(注意所有的迭代格式都是先计算搜索方向,再计算搜索步长,如同瞎子下山一样,先找到哪个方向可行下降,再决定下几步)。 取下降方向 即得阻尼牛顿法,只不过搜索步长 不确定,需要用线性搜索技术确定一个较优的值,比如精确线性搜索或者Goldstein搜索、Wolfe搜索等。特别地,当 一直取为常数1时,就是普通的牛顿法
2023-01-06 04:32:48 115KB 牛顿 牛顿法
1
比较全数值分析编程汇总,内容包括: 线性方程组的直接法:Gauss消去法与矩阵三角分解法(Doolittle分解法相比Crout分解法更常用)及其选择列主元的改进方法、Doolittle分解法的延伸(实对称正定矩阵利用Cholesky分解得到的平方根法、三对角矩阵作为线性方程组系数矩阵的追赶法) 线性方程组的迭代法:Jacobi迭代法、Gauss-Seidel迭代法(利用前者每次迭代已得到的最新分量加速)、逐次超松弛(SOR,Successive Over-Relaxation)方法 函数拟合的插值法:拉格朗日(Lagrange)插值法与牛顿(Newton)插值法。 函数逼近方法:数值逼近中引入了函数范数和函数内积的概念。前者用来度量逼近函数与原函数在一个区间内的整体误差,后者广泛用于各种数值逼近方法的计算过程中。函数的∞-范数对应最佳一致逼近;函数的2-范数(Euclid-范数)对应最佳平方逼近。 数值积分算法与数值微分。 非线性方程及方程组的数值方法。 矩阵特征值的数值解法:乘幂法与反幂法。 常微分方程的数值解法:欧拉(Euler)方法,龙格-库塔法。
1
潮流计算是电力系统中最基本,应用最广泛的一种计算,是电力系统稳定计算和故障分析的基础。这个代码通过matlab实现了用极坐标表示的牛顿法和P-Q分解法进行潮流计算,使用IEEE14节点系统进行测试,计算结果和应用matpower的潮流计算完全一致。 代码注释详细,能可靠运行,可拓展性强,算例参数可调,适合新手学习。 潮流计算的各个步骤都写在子函数里,模块化强,便于对潮流计算原理进行理解。 牛顿法潮流计算的步骤: (1)输入电力系统节点、支路、发电机的基本参数,形成导纳矩阵; (2)假设系统共有n个节点,m个PQ节点,因为平衡节点有且只有一个,所以PV节点共有n-m-1个,对于所有的PQ节点和PV节点,列写有功功率的不平衡量方程,对于PQ节点,还可以列写无功功率不平衡量的方程; (3)求雅可比矩阵,解修正方程; (4)修正节点电压; (5)求支路功率。
2023-01-03 14:26:01 6KB 电力系统 潮流计算 matlab
matlab lm算法代码非线性算法 梯度下降,高斯牛顿法和LM法C ++代码和Matlab代码
2022-12-30 01:06:37 2KB 系统开源
1