2025电赛预测无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip 随着无线通信技术的迅速发展,无线网络的安全问题日益凸显。为了有效地保护网络安全,维护用户隐私,本研究聚焦于无线通信安全领域中的几个关键问题:信道状态信息分析、深度学习模型训练、击键行为识别与分类,以及基于WiFi信号的非接触式键盘输入监测系统。这些问题的研究与解决,对提升网络安全审计的准确性和隐私保护水平具有重要的现实意义。 信道状态信息(Channel State Information, CSI)是无线网络中不可或缺的一部分,它反映了无线信号在传播过程中的衰落特性。通过对CSI的深入分析,可以实现对无线信道状况的精确掌握,这对于无线通信的安全性至关重要。研究者利用这一特性,通过获取和分析无线信号的CSI信息,来检测和预防潜在的安全威胁。 深度学习模型训练在无线通信安全中起到了关键作用。基于深度学习的算法能够从海量的无线信号数据中学习并提取有用的特征,对于实现复杂的无线安全监测任务具有天然的优势。训练出的深度学习模型能够对无线环境中的各种异常行为进行有效识别,从而在源头上预防安全事件的发生。 击键行为识别与分类是本研究的另一个重点。通过分析无线信号与键盘输入活动之间的关系,研究者开发了基于WiFi信号的非接触式键盘输入监测系统。该系统能够通过分析无线信号的变化,识别出用户在键盘上的击键行为,并将其转换为可识别的文本信息。这不仅能够实现对键盘输入的实时监测,还能有效地防止键盘输入过程中的隐私泄露。 基于WiFi信号的非接触式键盘输入监测系统,为网络安全审计与隐私保护提供了新的途径。通过这一系统,安全审计人员可以对用户的键盘输入进行非侵入式的监测,从而对可能的安全威胁做出快速反应。同时,对于个人隐私保护而言,这一技术可以辅助用户及时发现并阻止未经授权的键盘监控行为,从而保障用户的隐私安全。 为了实现高精度的击键位识别,研究者开发了专门的击键特征提取算法。这些算法通过对WiFi信号变化的深入分析,能够有效地从信号中提取出与键盘击键活动相关的特征,进而实现对击键位置的高精度识别。这一成果不仅提高了无线监测系统的性能,也为相关的安全技术研究提供了新的思路。 本研究通过对无线通信安全问题的多角度探讨和技术创新,为网络安全审计与隐私保护提供了有力的工具和方法。其研究成果不仅能够提高无线网络安全的防护能力,还能够在保护个人隐私方面发挥重要作用,具有广阔的应用前景。
2025-10-11 11:54:30 7.59MB python
1
内容概要:文档主要介绍了食用油品质检测与分析的四种技术手段。一是食用油品种识别,通过高光谱图谱结合GLCM算法提取油品纹理特征,再运用GA-SVM模型进行分类,最终以主成分分析散点图和层序聚类图展示分类结果。二是食用油的掺假鉴别,采用SI-PLSR方法建立油茶籽油掺假量预测模型,通过掺假浓度可视化预测图像直观展示掺假程度。三是理化定量预测,利用PCR和PLSR算法建立酸价、过氧化值等理化指标的预测模型并展示预测结果图。四是转基因油品预测,通过对油光谱预处理后建模,以不同颜色油滴标识转基因与否。; 适合人群:食品科学领域研究人员、食用油品质检测技术人员及相关专业的高校师生。; 使用场景及目标:①帮助专业人员掌握食用油品质检测的前沿技术;②为科研教学提供案例参考,提升教学质量;③为实验室检测提供具体操作指导和技术支持。; 其他说明:文档中提到的技术手段均配有图示或动态演示,有助于更直观地理解各个步骤及最终结果。
1
内容概要:本文介绍了基于图卷积神经网络(GCN)的数据分类预测方法及其在MATLAB中的实现。GCN作为一种处理图结构数据的深度学习模型,在这个案例中,不同特征被视为节点,它们之间的相关系数构成邻接矩阵并输入GCN中,以捕捉特征间的复杂关联性。文中详细描述了数据准备、GCN模型构建、代码实现及运行效果。提供的MATLAB代码已调试完毕,附带测试数据集,支持直接运行,适用于MATLAB 2022b及以上版本。运行结果包括分类效果图、迭代优化图和混淆矩阵图,有助于评估模型性能。 适合人群:从事数据科学、机器学习研究的专业人士,尤其是对图卷积神经网络感兴趣的科研工作者和技术开发者。 使用场景及目标:①需要处理具有复杂关联性的数据集;②希望通过GCN提高数据分类预测准确性;③希望快速上手并验证GCN模型的实际效果。 其他说明:代码注释详尽,便于理解和修改;提供完整的测试数据集,方便初次使用者直接运行体验。
2025-10-05 15:15:48 1.09MB MATLAB 深度学习
1
内容概要:本文档详细介绍了基于MATLAB实现的GCN图卷积神经网络多特征分类预测项目。文档首先阐述了GCN的基本概念及其在图数据分析中的优势,随后明确了项目的目标,包括实现多特征分类预测系统、提升分类能力、优化模型结构、增强可解释性和推广模型应用。接着,文档分析了项目面临的挑战,如处理异构图数据、多特征融合、避免过拟合、提高训练速度和解决可解释性问题,并提出了相应的解决方案。此外,文档还强调了项目的创新点,如多特征融合、高效图数据处理框架、增强的可解释性、多层次图卷积结构和先进优化算法的应用。最后,文档列举了GCN在社交网络分析、推荐系统、生物信息学、交通网络预测和金融领域的应用前景,并提供了MATLAB代码示例,涵盖数据准备、模型初始化、图卷积层实现、激活函数与池化、全连接层与输出层的设计。; 适合人群:对图卷积神经网络(GCN)感兴趣的研究人员和工程师,尤其是那些希望在MATLAB环境中实现多特征分类预测系统的从业者。; 使用场景及目标:①理解GCN在图数据分析中的优势和应用场景;②掌握MATLAB实现GCN的具体步骤和技术细节;③解决多特征分类预测中的挑战,如异构图数据处理、特征融合和模型优化;④探索GCN在社交网络分析、推荐系统、生物信息学、交通网络预测和金融领域的应用。; 其他说明:此文档不仅提供了理论上的指导,还附有详细的MATLAB代码示例,帮助读者更好地理解和实践GCN在多特征分类预测中的应用。建议读者在学习过程中结合代码进行实践,逐步掌握GCN的实现和优化技巧。
2025-10-05 14:57:24 35KB 图卷积神经网络 Matlab 深度学习
1
一种基于特征重要度的文本分类特征加权方法 本文提出了一种基于特征重要度的文本分类特征加权方法,以解决文本分类问题中的特征选择和权重分配问题。该方法通过计算每个特征的重要度,来确定每个特征在文本分类中的影响力,然后根据重要度大小来分配权重,从而提高文本分类的准确性。 知识点1:特征选择 在文本分类问题中,特征选择是一个重要的步骤。特征选择的目的是选择有代表性的特征,以减少维数灾难和提高分类准确性。常见的特征选择方法有Filter、Wrapper和Embedded等。Filter方法根据特征的统计特征选择特征,Wrapper方法使用分类器来评估每个特征的重要度,而Embedded方法则将特征选择与分类器训练结合起来。 在本文中,我们使用基于重要度的特征选择方法,计算每个特征的重要度,然后选择重要度高的特征。这种方法可以有效地减少特征维数,提高文本分类的准确性。 知识点2:特征加权 在文本分类问题中,特征加权是一个关键的步骤。特征加权的目的是根据每个特征的重要度来分配权重,以提高文本分类的准确性。常见的特征加权方法有均匀加权、基于 entropy 的加权和基于重要度的加权等。 在本文中,我们使用基于重要度的特征加权方法,计算每个特征的重要度,然后根据重要度大小来分配权重。这种方法可以有效地提高文本分类的准确性。 知识点3:文本分类算法 文本分类算法是文本分类问题中的核心组件。常见的文本分类算法有 Naive Bayes、决策树、随机森林和支持向量机等。这些算法可以根据文本特征来预测文本的类别。 在本文中,我们使用基于重要度的文本分类算法,计算每个特征的重要度,然后根据重要度大小来预测文本的类别。这种方法可以有效地提高文本分类的准确性。 知识点4:文本特征提取 文本特征提取是文本分类问题中的重要步骤。文本特征提取的目的是从文本中提取有代表性的特征,以用于文本分类。常见的文本特征提取方法有词袋模型、TF-IDF 模型和word2vec 模型等。 在本文中,我们使用基于词袋模型的文本特征提取方法,提取文本中的有代表性的特征,然后计算每个特征的重要度。这种方法可以有效地提高文本分类的准确性。 知识点5:特征重要度计算 特征重要度计算是本文的核心组件。特征重要度计算的目的是计算每个特征的重要度,以确定每个特征在文本分类中的影响力。常见的特征重要度计算方法有基于 entropy 的方法、基于 variance 的方法和基于 permutation 的方法等。 在本文中,我们使用基于 permutation 的方法计算每个特征的重要度,然后根据重要度大小来分配权重。这种方法可以有效地提高文本分类的准确性。 本文提出了一种基于特征重要度的文本分类特征加权方法,旨在解决文本分类问题中的特征选择和权重分配问题。该方法可以有效地提高文本分类的准确性,具有广泛的应用前景。
2025-09-29 23:21:21 1.12MB 研究论文
1
在自然语言理解领域中,意图识别与槽填充是两个核心任务。意图识别负责理解用户的请求属于哪一个意图类别,而槽填充则涉及从用户的语言中抽取出关键信息,即槽位。传统的做法是将这两个任务分开处理,但这种处理方式忽略了任务间的关联性,影响了最终的性能。 为了解决这一问题,研究人员提出了联合模型的处理方式,该方式将意图识别和槽填充作为一个统一的任务进行联合建模。联合模型的优势在于能够同时捕捉到意图和槽位之间的依赖关系,从而提升整体的识别精度。 在实现联合模型的过程中,模型的性能往往受限于特征抽取的质量。ELECTRA模型作为一种最新的预训练语言表示模型,通过替换式预训练方法,生成高质量的词嵌入表示。ELECTRA模型利用判别器来学习词语的真实性,而非传统的生成器,其效率更高,能够生成更为精细的特征表示,这在意图识别和槽填充任务中尤为重要。 为了支持对特定数据集的训练和验证,研究人员引入了SMP2019ECDT数据集。该数据集包含了大量多样化的对话样本,覆盖了多种场景和需求,为联合模型的训练提供了丰富的上下文信息。不仅如此,为了便于其他研究者复现实验结果,该系统还提供了数据处理模块,使得数据清洗、标注和划分等前期准备工作变得更为简洁高效。 在技术实现方面,该项目选择Python语言作为开发工具。Python以其简洁的语法、强大的库支持和活跃的社区,在人工智能领域尤其是机器学习和深度学习领域中得到了广泛应用。Keras框架作为Python中一个高级神经网络API,它能够以TensorFlow、Theano等为后端运行,设计简洁直观,能够快速实验和部署深度学习模型,非常适合用于构建复杂的自然语言理解系统。 通过将上述技术进行有效结合,该项目成功实现了一个基于Keras框架的自然语言理解系统。该系统不仅能够进行高效的特征抽取,而且还能够联合处理意图识别和槽填充两大任务,提高了整体的处理效果。这标志着自然语言处理领域在模型结构和任务处理方式上的一次重要进步。 此次分享的项目文件还包含一个压缩包,其中附赠了资源文件和详细说明文件。附赠资源文件可能包含了更多的使用技巧、案例分析和相关资源链接,方便用户深入理解系统的功能和应用。说明文件则详细地介绍了安装流程、运行步骤和参数配置等关键信息,保证了用户即使没有深入的背景知识也能够快速上手和使用该系统。此外,压缩包中的"nlu_keras-master"文件夹无疑包含了该项目的核心代码,通过阅读和分析这些代码,研究人员和技术开发者可以进一步优化和扩展系统的功能。
2025-09-28 12:20:08 276KB python
1
特征提取与图像处理是计算机视觉领域中的核心环节,它涉及到如何从原始的图像数据中抽取有意义的、可以用于后续分析和识别的特征。在第二版的《特征提取与图像处理》一书中,作者Mark S.Nixon和Alberto S.Aguado深入浅出地探讨了这一主题,由实英和杨高波进行中文翻译,使得国内读者也能轻松理解这些高级概念。 特征提取是图像分析的第一步,其目标是从复杂的像素阵列中提取出能够表征图像内容的关键信息。这通常包括边缘、角点、斑点、纹理等。例如,Canny边缘检测算法是一种经典的边缘提取方法,它通过多级滤波和阈值处理找到图像的显著边缘。角点检测如Harris角点检测和Shi-Tomasi角点检测则更注重于定位图像中稳定的几何结构。 图像处理则是特征提取的基础,包括预处理、增强和降噪等步骤。预处理可能包括灰度化、直方图均衡化,以提高图像的对比度和可视性。降噪方法如中值滤波和高斯滤波能有效去除椒盐噪声或高斯噪声。图像增强则通过拉普拉斯算子、Prewitt算子等来突出特定的图像特征。 在第二版中,作者可能会更新一些现代的特征表示方法,如SIFT(尺度不变特征变换)、SURF(加速稳健特征)和HOG(方向梯度直方图)。这些特征不仅具有尺度和旋转不变性,而且在物体识别和场景理解中表现出色。此外,深度学习的崛起也引入了新的特征提取手段,如卷积神经网络(CNN)的特征层,它们可以从大规模图像数据中自动学习到多层次的抽象特征。 特征匹配是图像处理中的另一关键环节,它涉及如何将一个图像的特征与另一个图像的特征进行对应。在第二版中,可能会介绍各种匹配算法,如Brute-Force匹配、FLANN(快速最近邻搜索)以及基于描述子相似度的匹配策略。 除此之外,书中可能还会涵盖图像金字塔、模板匹配、光流估计、立体视觉等话题,这些都是理解和应用图像处理技术的重要组成部分。在实际应用中,这些理论和技术广泛应用于自动驾驶、无人机导航、医学图像分析、安防监控等领域。 总结来说,《特征提取与图像处理(2版)》是一本全面介绍图像处理和特征提取的权威著作,它涵盖了从基础理论到最新进展的广泛内容,对于想要深入理解和应用这一领域的读者来说,是一本不可或缺的参考书。通过阅读这本书,读者不仅可以掌握经典的方法,还能了解到当前领域的前沿动态。
2025-09-27 15:03:52 42.09MB 特征提取 图像处理
1
基于一维CNN的轴承故障诊断迁移学习代码复现:从源域到目标域的特征提取与分布对齐实践,基于迁移学习的轴承故障诊断代码复现:一维CNN特征提取与JDA联合对齐的实现过程,top一区轴承诊断迁移学习代码复现 故障诊断代码 复现 首先使用一维的cnn对源域和目标域进行特征提取,域适应阶段:将源域和目标域作为cnn的输入得到特征,然后进行边缘概率分布对齐和条件概率分布对齐,也就是进行JDA联合对齐。 此域适应方法特别适合初学者了解迁移学习的基础知识,特别推荐,学生问价有优惠 ●数据预处理:1维数据 ●网络模型:1D-CNN-MMD-Coral ●数据集:西储大学CWRU ●准确率:99% ●网络框架:pytorch ●结果输出:损失曲线图、准确率曲线图、混淆矩阵、tsne图 ●使用对象:初学者 ,核心关键词: 一区轴承诊断; 迁移学习; 代码复现; 特征提取; 域适应; JDA联合对齐; 数据预处理; 1D-CNN-MMD-Coral; 西储大学CWRU数据集; 准确率; pytorch框架; 结果输出图示; 初学者。,复现一维CNN迁移学习轴承故障诊断代码:从基础到高级的深度学习之旅
2025-09-23 13:53:02 1.81MB
1
第三章 载波频偏估计算法的研究 相干检测通信系统接收机的特点是利用一个本振激光器(LO)与接收到的 载波调制信号进行相干以获得基带信号。理论上,要求本振激光器的振荡频率与 信号载波的频率完全相同。但实际上,光通信系统中激光器的振荡频率高达几百 THz,在目前的光器件的工艺条件下,两个激光器的振荡频率与我们所预先设置 的振荡频率都不可能完全吻合,即每个激光器都肯定有一定量的振荡频率偏移。 假设每个激光器的可能的振荡频偏的范围是[-X,+X]Hz,则两个激光器的相对频 偏(载波频偏)的范围就可能为[.2)(’+2X]Hz。载波频偏估计算法的目的就是通 过对离散数字基带信号的处理,去除载波频偏对调相系统中符号相位的影响。 目前应用于相干光传输系统接收机中的前馈式全数字载波频偏估计算法,主 要有两种,分别为四次方频偏估计算法和基于预判决的频偏估计算法。本章详述 了这两种算法的原理、算法参数,给出了这两种算法在l 12Gb/s PM.DQPSK系 统中的仿真结果。针对目前硬件实现所面临的器件处理速率不足这一重要问题, 设计了这两种算法的并行处理结构的方案。此外,还设计了基于预判决的频偏估 计算法的初始化方案。最后,横向比较了现有的几种载波频偏估计算法。 3.1四次方频偏估计算法 3.1.1四次方频偏估计算法的原理 四次方频偏估计算法【lI】是根据M次方频偏估计算法而来的。M次方频偏估 计算法,是应用于相位调制相干接收系统中,去除本地振荡和信号载波之间的频 率偏差对调相信号的基带信号相位的损伤。之所以叫做M次方,是因为算法通 过对复数符号进行M次方运算,从而利用调制信息相位的M倍为一个恒定不变 的相位值这一结论,去除调制信息相位并进行频偏估计。宅E(D)QPS'K调制方式 下,M=4,M次方频偏估计算法就可以称为“四次方频偏估计算法"。该算法是 一种前馈式频偏估计算法,无需反馈环路。 四次方频偏估计算法的原理图如图3.1所示。 图3-1四次方频偏估计算法原理框图 14
2025-09-23 10:44:55 2.69MB 光纤,信号
1
内容概要:本文介绍了基于MATLAB实现的Transformer-SVM组合模型在多特征分类预测中的应用。项目背景在于数据时代对高效分类预测的需求,特别是处理高维、多模态、多噪声数据的挑战。Transformer凭借自注意力机制捕捉全局信息,SVM则擅长高维空间分类,二者结合提升了多特征数据分类的准确性和鲁棒性。项目通过MATLAB实现数据预处理、Transformer特征提取、SVM分类、模型集成与优化、预测输出等模块,展示了在不同领域的广泛应用,如医学影像分析、金融风控、营销推荐、社交媒体分析及智能制造。; 适合人群:对机器学习和深度学习有一定了解,尤其是希望掌握多特征分类预测技术的研究人员和工程师。; 使用场景及目标:①适用于处理高维、多模态、多噪声数据的分类预测任务;②提高模型在复杂数据集上的分类精度和泛化能力;③应用于医学、金融、营销、社交、制造等多个领域,提供精准的数据分析和决策支持。; 阅读建议:本项目涉及Transformer和SVM的深度融合及其实现细节,建议读者具备一定的MATLAB编程基础和机器学习理论知识。在学习过程中,结合代码示例进行实践,关注特征提取与分类模块的设计,以及模型调优和集成学习的应用。
2025-09-22 20:05:59 35KB MATLAB Transformer 机器学习
1