内容概要:本文介绍了一个基于VMD-NRBO-Transformer-TCN的多变量时间序列光伏功率预测项目。通过变分模态分解(VMD)对原始光伏数据进行去噪和多尺度分解,提取平稳子信号;结合Transformer的自注意力机制捕获长距离依赖关系,利用时序卷积网络(TCN)提取局部时序特征;并引入牛顿-拉夫逊优化算法(NRBO)对模型超参数进行高效优化,提升训练速度与预测精度。整体模型实现了对复杂、非线性、多变量光伏功率数据的高精度预测,具备良好的鲁棒性与稳定性。文中还提供了部分Python代码示例,涵盖VMD实现和Transformer-TCN网络结构定义。; 适合人群:具备一定机器学习与深度学习基础,从事新能源预测、时间序列建模或智能电网相关研究的研究生、科研人员及工程技术人员;熟悉Python和PyTorch框架者更佳; 使用场景及目标:①应用于光伏发电系统的短期与中期功率预测,支持电网调度与储能管理;②作为多变量时间序列预测的高级案例,用于研究VMD、Transformer、TCN融合模型的设计与优化方法;③探索NRBO等数值优化算法在深度学习超参数调优中的实际应用; 阅读建议:建议读者结合代码与模型架构图逐步理解各模块功能,重点掌握VMD信号分解、Transformer与TCN的特征融合机制以及NRBO优化策略的集成方式,可自行复现模型并在真实光伏数据集上验证性能。
2025-10-13 14:47:33 26KB Transformer
1
通用软件无线电外围设备(Universal Software Radio Peripheral,USRP)可以使工程师快速设计和实现强大、灵活的软件无线电系统。
2025-10-13 10:35:39 1.7MB USRP
1
在电子设计自动化软件Proteus中,包含了丰富的元件库,这些元件库中的元器件对于模拟和设计电路图至关重要。本篇文章将详细列出并介绍一些Proteus中的常用元器件名称、功能以及其图示,为用户提供一个方便的参考。下面是一些Proteus中的常用元器件及其功能: 1. AND门(与门):它是一种基本的数字逻辑门,当且仅当所有输入都为高电平时输出高电平。 2. BATTERY(直流电源):用于在电路中提供恒定的电压。 3. BELL(铃, 钟):发出声音信号,用于报警或提示。 4. BRIDEG1(整流桥,二极管):用于将交流电转换为直流电。 5. BRIDEG2(整流桥,集成块):与BRIDEG1类似,但通常指封装为集成电路的整流桥。 6. BUFFER(缓冲器):用于隔离电路的一部分,防止负载影响信号源。 7. BUZZER(蜂鸣器):发出声音信号,常用于电子设备的提示音。 8. CAP(电容)和CAPACITOR(电容器):储存和释放电能的元件,通常用于滤波和耦合。 9. CAPACITORPOL(有极性电容):一种必须按照正确极性连接的电容器,如电解电容。 10. CAPVAR(可调电容):允许用户根据需要调整电容量。 11. CIRCUITBREAKER(熔断丝):保护电路不受过电流损害的装置,超过电流时会自动断开电路。 12. COAX(同轴电缆):传输射频信号的电缆,具有屏蔽层。 13. CON(插口):用于电子设备的接口,连接导线或电缆。 14. DIODE(二极管):允许电流单向流动的元件。 15. DIODESCHOTTKY(肖特基二极管):具有低正向压降的快速二极管。 16. DIODEVARACTOR(变容二极管):其电容值会随着反向电压的变化而改变,常用于调谐电路。 17. DPY(LED):发光二极管,用于显示和指示灯。 18. ELECTRO(电解电容):存储电荷量较大的电容器,通常极性需要正确连接。 19. FUSE(熔断器):保护电路的一种元件,过载时会熔断。 20. INDUCTOR(电感器):储存磁能,常用于滤波器和振荡电路。 21. JFET(场效应管):一种用场效应控制电流的半导体器件。 22. LAMP(灯泡)和LAMPNEDN(起辉器):用于产生可见光的电子元件。 23. LED(发光二极管):一种半导体器件,通电后会发光。 24. METER(仪表):用于测量电路中的电流、电压等参数。 25. MICROPHONE(麦克风):将声音转换为电信号的设备。 26. MOSFET(金属-氧化物-半导体场效应晶体管):一种重要的半导体器件,广泛用于放大和开关电路。 27. MOTOR(电机):将电能转换为机械能的装置,包括交流电机和伺服电机。 28. OPAMP(运算放大器):具有高增益的直流放大器,广泛应用于信号处理。 29. PHOTODIODE(光敏二极管):其导电性会因光照强度改变的半导体器件。 30. PNP和NPN(三极管):两种不同类型的晶体管,用于放大或开关电子信号。 31. POT(滑线变阻器):通过滑动触点调节电阻值的器件。 32. RESISTOR(电阻):阻碍电流流动的元件,用于分压、限流等。 33. SCR(晶闸管):可控硅整流器,用于控制高功率电路的开关。 34. TRANSFORMER(变压器):用于电压转换和隔离的器件。 35. TRlAC(三端双向可控硅):用于交流电路的无触点开关元件。 36. TRIODE(三极真空管):一种可以放大信号的真空管。 37. VARISTOR(变阻器):其阻值会随着施加的电压变化而改变的器件。 38. ZENER(齐纳二极管):在反向电压达到一定值时,能维持稳定电压的二极管。 39. 74系列数字集成电路:包括7407驱动门、74LS00与非门、74LS04非门、74LS08与门、74LS390TTL双十进制计数器等,它们是数字电路设计中的常用部件。 40. 数码管(7SEG4):用于显示数字0到9的显示器件。 41. 开关(SW系列):包括单刀单掷、双刀双掷开关等,用于控制电路的通断。 42. 7SEG3-8译码器电路、BCD-7SEG转换电路:用于将二进制编码的数字转换为能够驱动七段显示器的输出。 43. LOGICANALYSER(逻辑分析器)、LOGICPROBE(逻辑探针):用于检测和分析数字电路中的逻辑电平状态。 44. POWER(电源)、VOLTMETER(伏特计)、AMMETER-MILLImA(安培计):分别用于提供电能、测量电压和电流的仪器。 45. LM016L2液晶显示屏:用于显示两行16个字符的显示屏,有8位数据总线和控制端口。 46. MASTERSWITCH(主开关):用于电路通断的手动开关。 47. LOGICSTATE、LOGICTOGGLE(逻辑触发)、LOGICPROBE[BIG]等:用于显示逻辑状态和测试电路功能。 以上是Proteus软件中一些常用元器件的名称和功能介绍。由于Proteus软件持续更新,其元件库也在不断地增加和改进,因此本文将持续更新,以提供更多元件的详细信息。
2025-10-12 18:14:30 29KB proteus
1
基于三基站超宽带(UWB)DWM模块测距定位技术介绍:双边双向测距功能、官方与开源资料整合。,UWB定位 三基站加一个标签UWB相关资料 dwm1000模块 uwb定位 ds-twr测距 dw1000模块,双边双向测距,研创物联代码,最多支持4基站8标签测距,基站和标签、信道、速率等配置可通过USB串口进行切,支持连接官方上位机(有QT5源码),可实现测距显示及定位坐标解算并显示位置,原理图,PCB,手册等全套资料,有部分中文翻译资料,还有研创物联官方资料、网上几套开源全套资料等,代码关键部分中文注释,自己画板,移植源码,已经配置好,带定位信息显示,可在板子上OLED显示,也可以通过上位机显示。 UWB定位是一种利用超宽带技术进行定位的方法。它通过三个基站和一个标签来实现定位。其中,dw1000模块是一种常用的UWB模块,可以实现双边双向测距。研创物联提供了相应的代码和资料,支持最多4个基站和8个标签的测距。通过USB串口可以进行基站和标签、信道、速率等配置的切。此外,还可以连接官方上位机进行测距显示和定位坐标解算,并显示位置信息。相关的资料包括原理图、PCB设计、手册等,其中部
2025-10-11 16:56:04 3.51MB ajax
1
西门子200 Smart换热站程序:变量表、源代码、CAD图纸与威伦屏集成方案,西门子200smart换热站程序:变量表、源代码、CAD图纸与威伦屏介绍,西门子200smart热站程序西门子200smart热站程序 有 变量表 源程序代码 CAD图纸 威伦屏 程序 ,核心关键词:西门子200smart换热站程序; 变量表; 源程序代码; CAD图纸; 威伦屏。,西门子200 Smart换热站程序全解:变量表、源码与威伦屏应用及CAD图纸详解 西门子200 Smart换热站程序是西门子公司针对热力系统推出的一款先进的控制解决方案,它通过集成变量表、源程序代码、CAD图纸以及威伦屏界面,实现了换热站的智能化管理。在这一系统中,变量表作为程序运行的基础,记录了各种输入输出参数、系统状态、报警信息等,为整个换热站的运行提供了核心的数据支持。源程序代码则是控制逻辑的直接体现,负责处理各种数据,执行换热站的控制策略,确保系统的稳定运行。 CAD图纸在整个系统集成过程中扮演着重要的角色,它详细展示了换热站的硬件布置和流程走向,为安装调试提供了可视化依据。威伦屏(WeinVIEW)作为一种人机界面(HMI),它的集成使得操作人员能够直观地监控和控制换热站的运行状态,进行参数设置和故障排查,大大提高了系统的操作便捷性和可靠性。 西门子200 Smart换热站程序的集成方案不仅仅是一套简单的代码和图纸,它还涵盖了换热站设计、实施、调试和维护的全过程。通过专业的技术分析和系统化的设计,这一程序能够适应不同规模和类型的换热站项目,满足工业自动化和智能化的需求。 在技术解析方面,西门子200 Smart换热站程序的分析文档详细阐述了其工作原理、设计要点以及实施过程中的注意事项。文档通过理论与实际案例的结合,帮助技术人员更好地理解和掌握换热站的控制技术,进一步优化系统性能,确保热力系统的高效、稳定与节能。 西门子200 Smart换热站程序在实施过程中,涉及到了诸多关键步骤,如系统的初始化配置、数据参数的校准、控制逻辑的测试和验证等。每一个步骤都需要严格的操作标准和专业的技术支持,以保证换热站能够按设计要求正常运行。 此外,随着工业技术的飞速发展,西门子200 Smart换热站程序也在不断进步和完善。它不仅支持传统的控制需求,还能够与现代的智能技术相结合,如物联网(IoT)、大数据分析等,为换热站的智能化升级提供了可能。 西门子200 Smart换热站程序通过整合先进的控制技术、完善的文档资料和用户友好的操作界面,为用户提供了一个全面、可靠的解决方案。它不仅提升了换热站的控制精度和运行效率,也为企业的能源管理和环境保护做出了积极的贡献。
2025-10-09 15:35:42 6.91MB xhtml
1
线路与图面(Pattern):线路是做为原件之间导通的工具,在设计上会另外设计大铜面作为接地及电源层。线路与图面是同时做出的。介电层(Dielectric):用来保持线路及各层之间的绝缘性,俗称为基材。孔(Through hole / via):导通孔可使两层次以上的线路彼此导通,较大的导通孔则做为零件插件用,另外有非导通孔(nPTH)通常用来作为表面贴装定位,组装时固定螺丝用。防焊油墨(Solder resistant /Solder Mask) :并非全部的铜面都要吃锡上零件,因此非吃锡的区域,会印一层隔绝铜面吃锡的物质(通常为环氧树脂),避免非吃锡的线路间短路。根据不同的工艺,分为绿油、红油、蓝油。丝印(Legend /Marking/Silk screen):此为非必要之构成,主要的功能是在电路板上标注各零件的名称、位置框,方便组装后维修及辨识用。表面处理(Surface Finish):由于铜面在一般环境中,很容易氧化,导致无法上锡(焊锡性不良),因此会在要吃锡的铜面上进行保护。保护的方式有喷锡(HASL),化金(ENIG),化银(Immersion Silver),化锡(I
2025-09-30 21:29:06 70KB 集成电路
1
本课程基于Abaqus,应用两种加载方式一-FluidCavity与Pressure分别介绍了气动驱动软体机器人仿真分析流程。 该软体机器人涉及两种材料,主变形部分选用超弹性材料,应用Yeoh本构定义材料属性;限制层部分定义为线弹性材料。 此外,对结果的后处理进行了简要介绍。 想学轮胎充气、气囊充气、各种充气分析都能用 气动驱动软体机器人是机器人领域中一种新兴技术,它模仿生物体软体结构和运动原理,以实现复杂的动作和适应各种环境的能力。Abaqus软件是一个广泛应用于工程仿真分析的工具,它能够模拟物理现象和工程问题。在气动驱动软体机器人的仿真分析中,Abaqus软件扮演着关键角色,尤其是其强大的材料模型定义和加载方式的应用。 在本课程中,首先介绍了使用Abaqus进行气动驱动软体机器人仿真分析的流程。这一过程涉及两种不同的加载方式,即FluidCavity(流体腔体)和Pressure(压力加载)。流体腔体加载方式主要模拟内部流体对软体结构的作用,而压力加载则关注施加在软体机器人表面的均匀或非均匀压力效果。这两种加载方式的选择和应用,对于准确模拟气动驱动软体机器人的动态行为至关重要。 课程中提及的软体机器人结构由两种材料组成。主变形部分选用超弹性材料,这类材料具有高弹性和可逆变形的能力,非常适合模拟软体机器人在受力后的动态响应。而Yeoh本构定义是Abaqus中的一种材料模型,它被用来定义超弹性材料的应力-应变行为。Yeoh模型基于应变能密度函数,能够描述材料在大变形下的非线性弹性行为,非常适合模拟软体机器人在气压驱动下的形变和应力分布。另外,软体机器人的限制层部分定义为线弹性材料,它对软体结构的整体稳定性和抗拉强度提供支持。 在进行气动驱动软体机器人仿真分析后,结果的后处理也是一个重要环节。后处理可以分析仿真结果,包括变形图、应力分布、应变情况等,从而评估机器人的性能和可靠性。这对于优化软体机器人的设计以及预测其在实际应用中的表现具有重要意义。 该课程不仅适合对气动驱动软体机器人感兴趣的学员,也适合需要进行充气分析,如轮胎充气、气囊充气等实际应用的学习者。通过本课程的学习,学员能够掌握如何使用Abaqus软件进行气动驱动软体机器人的仿真分析,从而对软体机器人技术有一个全面而深入的了解。
2025-09-30 16:32:23 436KB edge
1
内容概要:本文介绍了Cursor这一新型AI辅助编程工具,它集成了GPT-4、Claude 3.5等先进LLM,界面与VSCode相似,支持扩展下载、Python编译器配置等功能。文章详细讲解了Cursor的使用步骤,包括下载注册、内置模型的选择、核心快捷键(Tab、Ctrl + K、Ctrl + L、Ctrl + I)的功能与使用方法,还提及了外部文档作为知识库和自定义System Prompt的功能。; 适合人群:初学者及有一定编程经验,想要尝试AI辅助编程的开发者。; 使用场景及目标:①帮助用户快速上手Cursor,实现从VSCode或PyCharm到Cursor的无缝衔接;②利用内置模型和快捷键提高编程效率,如自动补全代码、编辑代码、生成注释、回答代码相关问题等;③通过添加外部文档作为知识库,增强AI对项目的理解;④自定义System Prompt,使AI更贴合个人编程习惯。; 阅读建议:本文提供了详细的使用指南,建议读者按照步骤逐一尝试Cursor的各项功能,以便更好地理解和掌握这款AI辅助编程工具。
2025-09-30 09:52:08 773KB Cursor VSCode Claude
1
### 分布式锁原理介绍 #### 一、分布式锁概览 **分布式锁**是一种用于在分布式系统中控制多个节点对共享资源进行访问的技术。它主要用于解决多节点间并发访问同一资源时产生的竞争问题,确保资源的一致性和完整性。 #### 二、分布式锁的核心概念 1. **互斥特性**:确保同一时刻只有一个节点能够获取锁,从而独占资源。 2. **锁安全性**:确保锁的获取与释放过程是安全可靠的。 3. **锁失效机制**:防止因某些异常情况导致锁无法正常释放,从而引发死锁等问题。 4. **阻塞锁特性**:如果当前锁已被其他节点获取,请求锁的节点需要等待直至锁被释放。 5. **公平锁的特性**:按照请求顺序分配锁,避免某些节点长期等待。 6. **高可用性**:即使部分节点失败,也能保证锁服务的连续性和稳定性。 7. **高性能**:在高并发场景下保持良好的响应时间和吞吐量。 #### 三、分布式锁的应用场景 1. **12306网站售票**:在高峰时段,大量用户同时购票,分布式锁可以有效防止票务冲突。 2. **共享文档平台编辑**:多人同时在线编辑文档时,需要确保同一时间只有一人能编辑某段内容。 3. **全局自增主键**:在分布式数据库系统中,为每条记录分配唯一ID时,需要使用分布式锁来避免ID冲突。 #### 四、分布式锁的实现 ##### 1. 基于数据库实现分布式锁 - **利用MySQL唯一索引特性**:通过在表中创建唯一索引来实现分布式锁,但这种方式在高并发场景下性能较差,且实现较为复杂,因此较少在生产环境中使用。 ##### 2. 基于Redis实现分布式锁 - **Redis为单进程单线程模式**:这种模式可以将并发访问变为串行访问,提高数据的一致性。 - **使用Redis命令实现**:通过`SETNX`(Set If Not eXists)命令尝试设置一个键值对,如果键不存在则设置成功并返回1,否则返回0;结合`EXPIRE`命令为锁设置一个超时时间。 - **锁的生命周期管理**:设置锁时使用随机生成的UUID作为锁的值,以便解锁时进行验证;同时使用`EXPIRE`命令为锁设置超时时间,以防持有锁的客户端崩溃后锁无法正常释放。 ##### 3. 基于ZooKeeper实现分布式锁 - **ZooKeeper节点**:ZooKeeper中的节点(Znode)是数据的基本单元,分为多种类型:持久节点、持久有序节点、临时节点和临时有序节点。这些节点可以构成树状结构,便于管理和访问。 - **节点监听**:客户端可以在特定节点上设置监听器,当节点的状态发生变化时,会触发监听器,从而通知客户端进行相应的处理。 - **基本原理**:客户端尝试创建一个临时有序节点,若创建成功,则检查是否有排名比自己小的兄弟节点,如果没有则获得锁;如果有,则等待该兄弟节点被删除。这样,通过创建和删除临时有序节点的方式,实现了分布式锁的功能。 #### 五、分布式锁方案对比 - **基于数据库**:实现相对复杂,性能较低,适合于对数据一致性要求极高但并发量不大的场景。 - **基于Redis**:实现简单,性能较好,适用于大多数高并发场景。但在集群环境下可能遇到脏数据问题,可通过Redlock算法等高级方案解决。 - **基于ZooKeeper**:实现机制更为复杂,但提供了丰富的功能和高度的可靠性,适用于需要高度一致性和可靠性的场景。 选择合适的分布式锁实现方案需要根据具体的应用场景、性能需求和可靠性要求来进行权衡。在实际应用中,可以根据项目的具体情况选择最为合适的方法。
2025-09-29 16:56:52 1.8MB 分布式 zookeeper
1
LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN)结构,被广泛应用于处理和预测时间序列数据。在电池管理系统(BMS)中,对电池的荷电状态(State of Charge, SOC)的精确估计是保障电池安全、延长电池寿命和提高电池效率的关键技术之一。本文将详细介绍如何使用LSTM技术进行电池SOC估计,并提供一个包含两个数据集及其介绍、预处理代码、模型代码和估计结果的完整代码包,旨在为初学者提供一个全面的学习资源。 数据集是进行电池SOC估计的基础。在本代码包中,包含了两个经过精心挑选的数据集。这些数据集包括了不同条件下电池的充放电循环数据,如电压、电流、温度、时间等参数。通过分析这些数据集,可以发现电池性能随着循环次数和操作条件的变化规律,为模型的训练提供丰富的信息。 数据预处理是模型训练之前的必要步骤。在电池SOC估计中,由于原始数据通常包含噪声和异常值,且不同数据之间可能存在量纲和数量级的差异,因此需要对数据进行清洗和归一化处理。预处理代码包中的Python脚本将指导如何去除不规则数据、进行插值、归一化和数据分割等操作,以确保模型能够在一个干净、格式统一的数据集上进行训练。 模型代码是整个SOC估计过程的核心部分。本代码包提供了基于LSTM网络的SOC估计模型代码,详细展示了如何搭建网络结构、设置超参数、进行训练和验证等。其中,LSTM的多层堆叠结构可以捕捉到电池长期依赖性,这对于SOC估计至关重要。代码中还包括了模型的保存和加载机制,便于进行模型的持久化处理和后续的模型评估。 估计结果是验证模型性能的重要指标。通过在测试集上运行模型,可以得到电池SOC的估计值,并与实际值进行对比。本代码包中包含的评估脚本将帮助用户计算均方误差(MSE)、均方根误差(RMSE)等多种评价指标,从而对模型的准确性和泛化能力进行全面评估。 此外,技术博客文章在电池估计中的应用解析一引言.doc、做电池估计最基本的.html等文档,提供了对电池SOC估计方法论的深入解读和实战指南。这些文档详细介绍了电池SOC估计的意义、应用场景以及所采用技术的原理和优势,为初学者提供了从理论到实践的完整学习路径。 本代码包为电池SOC估计提供了一个从数据集获取、数据预处理、模型训练到结果评估的完整流程。它不仅适用于初学者入门学习,也为专业人士提供了一个实用的工具集。通过深入研究和实践本代码包,可以有效提升电池SOC估计的准确度,进而推动电池技术的发展和应用。
2025-09-29 11:32:46 179KB 数据仓库
1