内容概要:本文档是电子科技大学2024年研究生一年级《机器学习》考试的回忆版真题,由考生在考试后根据记忆整理而成。文档涵盖了机器学习的基本概念和常见算法,如监督学习、非监督学习、混淆矩阵计算、梯度下降法、线性回归、朴素贝叶斯分类器、神经网络的前向与反向传播、决策树的信息熵和信息增益、集成学习中的Boosting和Bagging、K均值聚类和支持向量机等知识点。每道题目附有详细的参考答案,旨在帮助学生复习备考。此外,作者还提醒考生注意老师的课堂划重点,并指出书店复习资料老旧,建议不要购买。 适合人群:正在准备电子科技大学《机器学习》课程考试的研究生一年级学生,以及希望巩固机器学习基础知识的学习者。 使用场景及目标:①用于复习和备考电子科技大学《机器学习》研究生一年级考试;②帮助学生理解并掌握机器学习的核心概念和算法;③通过实际题目练习提高解题能力。 阅读建议:此文档由考生回忆整理,部分数据可能与原题略有差异,但知识点完全一致。考生应重点关注老师课堂上的划重点内容,并结合本试题进行针对性复习。同时,建议考生在复习过程中多动手实践,加深对公式的理解和记忆,特别是对于容易混淆的概念和公式,要反复练习确保熟练掌握。
1
内容概要:本文详细介绍了利用无监督学习方法进行绝缘子缺陷检测的技术实现。首先,文章解释了数据集的结构特点,即训练集中仅有正常样本,而测试集则混合了正常和缺陷样本。接着,作者展示了如何构建卷积自编码器(CAE),并通过马赛克增强等技术提高模型的泛化能力。此外,文中还讨论了如何通过计算重建误差来检测异常,并给出了具体的检测流程和实验结果。最后,文章提到了一些改进方向,如引入注意力机制和域适应方法。 适合人群:对无监督学习、深度学习以及电力系统巡检感兴趣的科研人员和技术开发者。 使用场景及目标:适用于电力系统的自动化巡检任务,旨在提高绝缘子缺陷检测的效率和准确性,减少人工干预的需求。 其他说明:该方法能够在没有标注数据的情况下实现较高的检测精度,特别适合于缺陷样本稀缺的实际应用场景。同时,代码已在GitHub上开源,方便研究者和开发者进一步探索和改进。
2025-10-15 15:49:35 2.55MB
1
【SSL-RL】自监督强化学习:事后经验回放 (HER)算法 事后经验回放,Hindsight Experience Replay (HER) 是一种在稀疏奖励强化学习环境下提高智能体学习效率的策略。稀疏奖励问题是指智能体在多数状态下无法获得有价值的反馈,因为奖励信号极其稀少或完全没有。HER通过回顾智能体过去未能实现的目标,将这些“失败”的经验转换为有价值的学习机会,从而极大地提高了智能体在稀疏奖励场景中的学习效率。 HER算法最早由OpenAI团队提出,主要用于解决目标导向的强化学习任务,其中智能体的目标是达到某个特定的状态(例如到达某个地点或完成某个任务),但由于奖励稀疏,智能体很难获得足够的反馈进行有效学习。(这已经是被广泛利用的机制了)
2025-09-11 18:45:13 3KB 机器学习 人工智能 项目资源
1
PatchTST模型:自监督时间序列预测的革新与高精度应用,PatchTST模型:基于Transformer的自监督时间序列预测模型,单多输入输出兼顾,局部特征与多维序列的精确表征,PatchTST模型无监督、自监督(Patch Time series Transformer)时间序列预测。 单输入单输出,多输入多输出,精度极高。 该模型基于基础transformer模型进行魔改,主要的贡献有三个: 1.通过Patch来缩短序列长度,表征序列的局部特征。 2.Channel Independent的方式来处理多个单维时间序列 3.更自然的Self-Supervised 方式 ,PatchTST模型;自监督;时间序列预测;Patch;多输入多输出;高精度;局部特征表征;通道独立处理;自然自监督方式。,PatchTST:高效自监督时间序列预测模型
2025-08-27 09:54:05 844KB
1
大模型安全关键词库与安全测试题库是当前人工智能领域中为了确保技术发展与应用安全而特别设计的工具,旨在通过关键词的过滤与安全问题的测试来预防和减少可能的风险和漏洞。大模型评估采集表则是在进行模型安全评估时所使用的数据收集表格,它帮助相关人员按照既定标准对大模型进行全面的评估。大模型备案信息采集表和备案表模板是用于大模型开发者在向监管机构进行备案时需要提交的信息与文件,确保了大模型开发的合规性。 网信办监督检查是国家网络信息办公室对互联网信息服务相关活动进行的监管活动,这包括但不限于人工智能领域的技术开发与应用。通过这样的监管,可以确保大模型的应用符合国家的法律法规,保障网络空间的安全和用户权益。 AI种类的多样性是目前人工智能发展的重要特征之一。从简单的机器学习算法到复杂的深度学习网络,再到强大的大模型,不同种类的AI在处理信息、学习能力以及应用场景上各有千秋。随着技术的进步,AI的种类还在持续扩展,例如生成对抗网络(GANs)、强化学习模型等。 法律法规是人工智能发展的框架和指南。无论是数据隐私保护、算法歧视、知识产权,还是人工智能伦理,都需要相应的法律法规来规范。目前,众多国家和国际组织都在积极制定和完善与人工智能相关的法律法规,以适应快速发展的技术现状,并对未来可能出现的问题做出预防。 在上述领域中,开发者和企业需要不断关注最新的监管动态和技术进展,以确保其产品和服务的安全合规,同时也能够在合法范围内实现技术的最大潜力。为此,各类大模型相关的安全措施和备案流程就变得尤为重要,它们是推动人工智能技术健康发展的重要保障。
2025-07-10 18:42:35 14.47MB
1
内容概要 《机器学习(西瓜书)实用联系题》是与经典教材《机器学习》(周志华著,俗称“西瓜书”)配套的练习资料。它围绕西瓜书中各章节的核心知识点,精心设计了一系列实用的练习题。这些题目涵盖了机器学习的基础理论、算法原理、模型构建与评估等多个方面,旨在帮助读者巩固理论知识,提升实践能力。通过解答这些练习题,读者可以深入理解机器学习算法的细节,掌握如何将理论应用于实际问题的解决过程中,从而更好地应对机器学习领域的各种挑战。 实用人群 机器学习初学者:对于刚刚接触机器学习领域的学生、自学者等,这些练习题可以帮助他们系统地学习和掌握基础知识,逐步建立起对机器学习算法和概念的理解,为后续深入学习打下坚实基础。 高校教师与学生:教师可以将其作为教学辅助材料,用于布置作业、组织课堂讨论等,帮助学生更好地消化课堂知识;学生则可以通过练习题检验自己的学习效果,加深对课程内容的理解和记忆,提高学习效率。
1
"无监督域自适应的切片Wasserstein差异(SWD):特征分布对齐的几何指导和跨领域的学习方式" 在本文中,我们将介绍一种新的无监督域自适应方法,称为切片Wasserstein差异(SWD),旨在解决域之间的特征分布对齐问题。该方法基于Wasserstein度量和特定于任务的决策边界,提供了一个几何上有意义的指导,以检测远离源的支持的目标样本,并使有效的分布对齐在一个端到端的可训练的方式。 在无监督域自适应中,一个主要挑战是如何跨域学习和泛化。深度学习模型尽管具有出色的学习能力和改进的泛化能力,但是在不同域中收集的数据之间的关系的转移仍然是一个挑战。域转移可以以多种形式存在,包括协变量移位、先验概率移位和概念移位。 我们提出的方法旨在捕捉特定任务分类器的输出之间的差异的自然概念,提供了一个几何上有意义的指导,以检测远离源的支持的目标样本,并使有效的分布对齐在一个端到端的可训练的方式。 我们的方法基于Wasserstein度量,通过最小化在特定任务分类器之间移动边缘分布,来实现域之间的特征分布对齐。我们还使用切片Wasserstein差异(SWD)来实现有效的分布对齐,并且可以容易地应用于任何局部自适应问题,例如图像分类、语义分割和对象检测。 相比于之前的方法,我们的方法不需要通过启发式假设在特征、输入或输出空间中对齐流形,而是直接对需要整形的目标数据区域进行整形。我们的方法也可以应用于其他领域,例如图像检索、基于颜色的风格转移和图像扭曲。 在实验验证中,我们的方法在数字和符号识别、图像分类、语义分割、目标检测等方面都取得了良好的结果,证明了该方法的有效性和通用性。 我们的方法为解决域之间的特征分布对齐问题提供了一种新的解决方案,具有良好的泛化能力和可扩展性。 在深度卷积神经网络中,我们可以使用切片Wasserstein差异(SWD)来实现有效的分布对齐,并且可以容易地应用于任何局部自适应问题,例如图像分类、语义分割和对象检测。 在无监督域自适应中,我们可以使用Wasserstein度量来捕捉特定任务分类器的输出之间的差异的自然概念,提供了一个几何上有意义的指导,以检测远离源的支持的目标样本,并使有效的分布对齐在一个端到端的可训练的方式。 在实验验证中,我们的方法在数字和符号识别、图像分类、语义分割、目标检测等方面都取得了良好的结果,证明了该方法的有效性和通用性。 我们的方法可以应用于其他领域,例如图像检索、基于颜色的风格转移和图像扭曲。我们的方法为解决域之间的特征分布对齐问题提供了一种新的解决方案,具有良好的泛化能力和可扩展性。
2025-04-24 01:27:38 1.28MB 效果验证
1
监督医学图像分割 刘立豪,当归I阿维莱斯·里维罗和卡罗拉·比比亚恩·舍恩利布。 介绍 在此存储库中,我们提供了的PyTorch实现。 要求 火炬1.5.0 火炬视觉0.4.2 SimpleITK 1.2.4 opencv-python 4.2.0.32 用法 克隆存储库: git clone https://github.com/lihaoliu-cambridge/unsupervised-medical-image-segmentation.git cd unsupervised-medical-image-segmentation 下载LPBA40数据集的图像和分割蒙版: LPBA40图片: LPBA40标签: 将它们解压缩到文件夹datasets/LPBA40 : datasets/LPBA40/LPBA40_rigidly_registered_pairs data
2024-06-17 17:50:56 114KB Python
1
监督学习-线性模型-2. 岭回归&Lasso回归
2024-06-01 20:10:14 263KB 线性回归 监督学习
1
内容概要:该资源介绍了使用机器学习方法对毒蘑菇进行分类的实现。主要包含了逻辑回归、高斯朴素贝叶斯、支持向量机、随机森林、决策树和人工神经网络等六种监督学习模型的应用。 适用人群:对机器学习和分类算法感兴趣的学习者、数据科学家、机器学习工程师等。 使用场景及目标:本资源可用于学习如何使用不同的监督学习模型对毒蘑菇进行分类,帮助用户理解各种模型的原理和应用场景,并能够根据实际需求选择合适的模型进行分类任务。 其他说明:资源中提供了详细的代码示例和实验结果,以及对比不同模型在毒蘑菇分类任务上的性能评估,帮助用户深入理解各个模型的优缺点和适用范围。
2024-05-29 18:49:19 39KB 机器学习 逻辑回归 特征工程
1