在电力电子技术飞速发展的当下,磁性元件作为功率变换器中的关键部分,其性能直接决定了系统的效率、功率密度与可靠性。特别是磁芯损耗,在高频高效的应用中占有相当比重。准确评估磁芯损耗,对优化设计和提升转换效率至关重要。本文采用实验数据和数学建模相结合的方法,构建了磁芯损耗的预测模型。 针对不同励磁波形的精确识别问题,利用四种磁芯材料的数据集,分析了磁通密度波形的时域特征,并进行傅里叶变换至频域提取谐波。运用FNN构建MLP模型,用前八个谐波负值作为特征数据进行训练,但效果不佳。随后,采用信号处理与机器学习结合的THD-MLP模型,准确率达到了100%,并成功预测了数据。 研究了温度对磁芯损耗的影响,对同一种材料在不同温度下的损耗数据进行预处理和初步分析,结合斯坦麦茨方程,通过最小二乘回归拟合得到了修正后的损耗方程。该方程预测效果良好,相关系数达到0.997678,RMSE为11822.8。 再者,为探究温度、励磁波形和磁芯材料对损耗的综合影响,首先对数据进行分类和特征提取,构建了磁损值与这些因素的多项式模型,并用最小二乘法拟合获得最佳参数。通过枚举法找到了最小磁损值对应的条件,预测在特定条件下的最小磁芯损耗。 在分析了温度、励磁波形和材料对磁芯损耗的独立及协同影响后,发现传统回归方法在处理复杂非线性关系时存在局限,预测精度不足。因此,将最小二乘回归结果作为新特征,与MLP结合进行非线性回归建模,引入对数变换处理损耗数据,最终得到与真实数据高度相关的预测结果。 为计算最小磁芯损耗和传输磁能最大时的条件值,构建了基于预测模型的目标函数,并转化为最小值问题。利用遗传算法进行求解,确定了磁芯损耗和传输磁能的最优值。整个研究过程运用了多种技术和算法,包括最小二乘回归、多层感知器MLP模型、傅里叶变换、FNN以及遗传算法。 关键词包括:磁芯损耗、最小二乘回归、多层感知器MLP模型、机器学习、遗传算法等。 问题五的求解过程表明,在电力电子变换器优化设计中,准确评估磁性元件性能,特别是磁芯损耗,对于提高整体系统的效率和可靠性具有重要意义。通过实验数据和数学建模相结合,构建的预测模型能够有效评估磁芯损耗,为磁性元件设计和功率转换效率优化提供有力支持。同时,通过模型预测,可以确定最优的工作参数,为磁性元件的应用提供理论基础和实际操作指导。整体研究过程中,综合利用了现代数学建模技术和先进的机器学习方法,展现了跨学科研究在解决实际工程问题中的潜力和价值。
1
内容概要:本文探讨了基于数据驱动方法对磁性元件的磁芯损耗建模的必要性和方法。主要内容包括磁芯损耗的基本概念、现有损耗模型的分类(损耗分离模型和经验计算模型)、实验场景和数据说明。文章提出了四个具体问题:励磁波形分类、斯坦麦茨方程修正、磁芯损耗因素分析以及基于数据驱动的磁芯损耗预测模型构建。这些问题涉及实验数据的处理、模型的准确性验证以及模型的实际应用。最终,希望通过构建高精度且广泛的磁芯损耗预测模型,提高磁性元件的设计效率和性能。 适合人群:对电力电子技术、磁性元件设计及磁芯损耗建模感兴趣的研究生、科研人员和技术工程师。 使用场景及目标:① 为磁性元件的设计和优化提供精确的磁芯损耗评估工具;② 推动高频、高功率密度和高可靠性的功率变换器产品研发。 阅读建议:建议读者结合提供的实验数据,动手实践建模过程,深入理解各个步骤的意义和实现方法,特别是在励磁波形分类和磁芯损耗预测模型构建的部分。
1
磁芯损耗pdf,磁芯损耗是磁芯材料内交替磁场引致的结果。某一种材料所产生的损耗,是操作频率与总磁通摆幅(ΔB)的函数。磁芯损耗是由磁芯材料的磁滞、涡流和剩余损耗引起的。
2022-04-26 15:27:42 113KB 其他
1