GA(遗传算法)优化BP(反向传播)神经网络预测是一种将遗传算法与BP神经网络结合的优化方法,旨在提高神经网络的预测性能。BP神经网络通过反向传播算法调整权重和偏置,以最小化误差,但该算法容易陷入局部最优解,特别是在复杂的非线性问题中。遗传算法是一种模拟自然选择和遗传学原理的优化算法,通过选择、交叉、变异等操作在解空间中搜索最优解。 ### 结合过程: 1. **编码与初始化**:将BP神经网络的权重和偏置参数编码成染色体(即遗传算法的个体),初始化一群个体,构成初始种群。 2. **适应度评估**:使用BP神经网络进行预测,计算每个个体的适应度,通常是通过误差值(如均方误差)来衡量。 3. **选择、交叉与变异**:通过选择操作保留适应度高的个体,交叉操作生成新个体,并通过变异操作引入新的可能解,形成新的种群。 4. **进化与优化**:迭代进行选择、交叉、变异操作,不断优化种群中的个体,直到满足预定的停止准则,如达到最大迭代次数或误差达到某一阈值。 5. **训练优化**:最终选择适应度最好的个体作为BP神经网络的权重和偏置,完成网络的训练。
1
GA-BP VS BP-遗传算法在哪优化了BP神经网络?附实验数据和代码
2024-05-21 16:31:41 16KB 神经网络 遗传算法
1
以非线性预测评价为基础,采用BP神经网络模型,利用遗传算法优化网络初始权值和阈值,建立一个新的煤矿底板突水危险性预测的网络模型,通过收集不同突水矿井的资料,综合考虑多种影响底板突水的因素。运用Matlab编程对网络原始数据进行训练,并对不同工作面底板是否突水及突水量进行预测分析,结果表明,该模型收敛速度快、预测精确度高,且具有较强的泛化能力。
2024-01-08 19:32:30 621KB BP神经网络 遗传算法 底板突水
1
根据人工神经网络处理大规模非线性动力系统、遗传算法具有较好的寻优能力的特点,将二者有机的结合起来,提出了基于遗传算法改进的洪水预报模型,并将其应用于四川省达州市州河流域的水文预报。实验结果表明,本模型能够减少训练次数,提高预报精度,能更好的对洪水进行预报。
2023-02-08 14:55:21 945KB  神经网络 遗传算法 洪水预报 模型
1
MATLAB源程序4 神经网络遗传算法函数极值寻优-非线性函数极值.zip
2022-11-18 16:27:35 103KB MATLAB 神经网络 智能算法
神经网络遗传算法函数极值寻优——非线性函数极值寻优
2022-11-07 23:28:38 189KB 神经网络遗传算法
1
朱元国教授的“智能优化算法”课件,包括模拟退火算法、人工神经网络、遗传算法、蚁群等。模式识别、机器学习等都是用的上的。
1