内容概要:本文详细介绍了利用COMSOL多物理场仿真软件求解复合材料频散曲线的方法。首先解释了频散曲线的概念及其重要性,然后逐步讲解了如何在COMSOL中建立复合材料的几何模型、设置材料属性、配置物理场并最终求解频散曲线。文中提供了具体的代码片段,展示了从几何建模到结果可视化的完整流程。此外,还讨论了频散曲线在声学领域的应用潜力,如设计具有特定隔音效果的复合材料。 适合人群:从事复合材料研究、声学工程及相关领域的科研人员和技术爱好者。 使用场景及目标:适用于需要理解和掌握COMSOL软件操作技巧的研究者,特别是那些希望通过频散曲线优化复合材料性能的人群。目标是让读者能够独立完成类似项目的建模与计算。 其他说明:文中提供的算例均为复现案例,旨在帮助读者更好地理解每个步骤的具体实施方法。同时,鼓励读者尝试修改参数以获得更加符合实际需求的结果。
2025-11-26 14:57:38 923KB COMSOL
1
电力系统是现代社会的基础,而PowerWorld Simulator是一款广泛应用于电力系统分析和规划的软件工具。"10k节点的PowerWorld大算例"是电力工程领域一个重要的研究实例,它涉及了大规模电力网络的优化和潮流分析。这个算例包含超过10,000个节点,这在实际电力系统中代表了相当复杂的网络结构,对于理解和应用电力系统模拟技术具有深远的意义。 我们需要了解PowerWorld Simulator的基本功能。这款软件能够进行静态和动态的电力系统分析,包括但不限于潮流计算、稳定性研究、故障分析、安全评估和发电计划制定。其中,潮流分析是确定在特定运行条件下的电压、电流和功率分布的关键步骤,这对于优化电网运行、确保供电质量和可靠性至关重要。 在这个大算例中,文件"ACTIVSg10k.pwb"是PowerWorld的工作簿文件,它存储了整个电力系统的模型信息,包括节点、线路、发电机等元件的参数。"case_ACTIVSg10k.m"可能是MATLAB脚本,用于导入或处理数据,可能包含了数据预处理和结果后处理的代码。 "ACTIVSg10k.con"文件包含了电力系统的约束条件,如电压限值、线路载流能力等。这些约束是优化问题的核心部分,因为任何解都必须满足这些条件才能被认为是可行的。"ACTIVSg10k.dyd"和"ACTIVSg10k.dyr"文件则涉及到动态模拟,它们可能包含了系统动态行为的详细描述,如发电机的转速变化、励磁控制等。 "ACTIVSg10k_EPC"可能表示扩展电力系统数据(Extended Power System Data,EPD),这是PowerWorld的一种数据格式,用于存储和交换电力系统模型数据。"ACTIVSg10k_GIC_data.gic"可能涉及到地磁扰动(GIC)的影响,这是一种由太阳活动引起的现象,可以对电力系统产生潜在危害。 "contab_ACTIVSg10k.m"可能包含了控制器配置信息,例如励磁控制器、电压调节器等,这些都是确保系统稳定运行的重要元素。通过分析这些控制器的设置,我们可以深入理解系统的动态性能。 "10k节点的PowerWorld大算例"是一个全面研究电力系统模拟、优化和动态特性的宝贵资源。它涵盖了电力系统分析的关键方面,从基础的潮流计算到复杂的动态模拟,为电力工程师和研究人员提供了实战平台,有助于提升我们对大规模电力网络的理解和管理能力。通过对这些文件的深入解读和应用,我们可以更好地应对现实世界中的电力系统挑战,提高电力系统的可靠性和效率。
2025-11-14 10:07:17 11.82MB 电网的模拟
1
1.1 创建算例 在 OLGA 中,您可在 GUI 中使用单个模拟算例文件(Case),或将 若干算例集合起来放入同一项目文件(Project)下。 在本课程中,您将在桌面上预先定义好的文件夹下进行操作,其中 数据来源于 USB 中所存储的文件。 点击右下角的 Browse 来定位和选择文件存放位置: Desktop → FA Exercises OLGA 7.2 → Guided Tour 选择 Basic Case,然后点击 Create: 以上操作将创建一个标签为 Basic.opi 的完整算例文件,该文件存放在以下文件路径下的文 件中:C:\Users\User1\Desktop\FA Exercises OLGA 7.2\Guided Tour
2025-11-12 15:07:37 7.89MB OLGA flow
1
SWASH模型,全称为“Simulating WAves till SHore”,是一种广泛应用的计算波浪动力学的开源软件。这个模型主要用于模拟波浪在近岸区域的传播、变形和破碎过程,对于海洋工程、海岸设计以及环境影响评估具有重要的科学价值。在给定的“Wave transformation over an elliptic shoal on a sloped bottom”算例中,SWASH模型被用来研究波浪在椭圆形浅滩上的演变,同时考虑了海底斜坡的影响。 椭圆浅滩是海岸线常见的地貌特征,它对波浪的传播和能量分布有着显著的影响。在这种地形下,波浪会经历折射、反射、绕射等一系列复杂的动力学过程。SWASH模型能够通过数值解法,精确模拟这些现象,为工程师和科学家提供可靠的数据支持。 模型的输入文件包含了多个方面的重要参数,例如: 1. 海底地形数据:文件可能包含地形的高度、形状和斜率等信息,以描述椭圆浅滩的几何特性。这通常以网格或ASCII格式存储,用于构建计算域的三维模型。 2. 波浪条件:输入文件会定义初始的波浪特征,如波高、周期、方向等,这些都是波浪传播的起始条件。这些参数可以是单一波浪,也可以是多波组合,以模拟真实的海况。 3. 边界条件:SWASH模型需要设定边界条件,包括远场边界(代表无穷远处的波浪条件)和近场边界(如海岸线或结构物)。这些条件会影响波浪在计算域内的传播和反射。 4. 时间步进和模拟时长:模型会设定计算的时间步长,确保数值稳定性的同时,减少计算需求。模拟时长则决定了模型运行至何时停止,通常会覆盖一个或多个人工波的完整周期。 5. 输出设置:用户可以指定输出结果的频率和类型,如波高、水位、流速等,并可以导出为图形或数据文件,便于后处理和分析。 在“l41berkh”这个文件名中,可能表示的是一个特定的配置或案例编号,具体含义可能需要结合实际文件内容来解读。通过分析这个案例,我们可以深入理解波浪在复杂海岸地形中的行为,从而优化海岸设计,预测灾害风险,或者对环境影响进行评估。 SWASH模型是一个强大的工具,它允许我们对海洋动力学现象进行细致入微的研究。在“Wave transformation over an elliptic shoal on a sloped bottom”这个算例中,我们可以学习到如何应用该模型解决实际问题,同时也展示了海洋工程领域中数值模拟的重要性。
2025-11-07 16:24:49 3.65MB
1
**正文** IEEE-14BUS数据PSASP格式是电力系统分析软件PSASP(Power System Analysis Toolbox)中用于模拟和分析14节点(或14母线)电力系统的标准案例。这个案例广泛应用于教学和研究中,因为它包含了各种复杂的电网特征,如负荷、发电机、变压器、线路等,为电力系统动态和稳定性分析提供了基础。 在PSASP中,IEEE-14BUS案例的数据通常分为几个部分,包括系统参数、发电机模型、负荷模型、变压器和线路参数等。这些数据以特定的文本格式存储,便于PSASP读取和处理。下面将详细解释这些关键组成部分: 1. **系统参数**:这部分包含系统的总体信息,如节点数、发电机数、负荷数等。它定义了系统的规模和结构。在IEEE-14BUS案例中,有14个节点(母线),其中6个节点带有发电机,其余为负荷节点。 2. **发电机模型**:每个发电机都有其特定的参数,如额定功率、励磁电流、调压特性等。发电机模型定义了发电机如何响应系统中的变化,例如频率和电压的波动。 3. **负荷模型**:负荷通常被简化为恒定功率因数或可变功率因数模型。在IEEE-14BUS案例中,负荷的有功功率和无功功率需求会被指定,这影响系统平衡和电压稳定性。 4. **变压器和线路参数**:这部分数据描述了电力系统中变压器和线路的电气特性,如阻抗、电导、电纳和容量。这些参数用于计算电压降、功率损耗和潮流分布。 5. **AVR(自动电压调节器)模型**:在"IEEE-14BUSavrs1"文件中,AVR模型描述了发电机的电压控制机制。AVR可以自动调整发电机励磁电流,以保持母线电压在设定点附近,对系统的电压稳定性至关重要。 6. **运行条件**:PSASP还需要知道系统初始运行状态,比如发电机功率设定、负荷水平等,以便进行模拟分析。 7. **计算任务**:用户可以指定不同的计算任务,如静态潮流分析、动态模拟、小干扰稳定性分析等。对于IEEE-14BUS案例,可能会涵盖所有这些任务,以全面理解系统行为。 通过分析和模拟这个案例,工程师和学者可以研究电力系统的稳定性和控制策略,评估新设备或控制策略的影响,以及进行故障分析。在实际应用中,类似的方法也适用于大型电力系统的分析,只是数据规模和复杂性会显著增加。 总结来说,IEEE-14BUS数据PSASP格式提供了一个标准的电力系统模型,用于测试和验证电力系统分析工具的性能,以及开展电力系统工程的研究。理解和掌握这种格式对于电力系统分析的专业人士至关重要。通过PSASP对这个案例进行深入分析,不仅可以学习电力系统的理论知识,还能提升解决实际问题的能力。
2025-11-04 17:15:20 1.08MB IEEE 14BUS算例 PSASP
1
2.5 阵列天线的RCS 由单元天线的RCS得到阵列天线的RCS
2025-11-02 14:15:48 1.95MB CST丛书 相控阵天线 算例05
1
### Fluent简单算例知识点概述 #### 一、Fluent简介及其功能 **Fluent**是一款高性能的流体仿真软件,广泛应用于学术研究和工业设计领域。它可以模拟复杂的流体流动和热传导问题,具备强大的非结构网格处理能力,能够应对各种复杂的外形结构。 - **网格类型**:支持二维三角形、四边形以及三维四面体、六面体和金字塔形网格。这些网格的灵活性极大地方便了复杂外形的模拟。 - **网格适应性**:对于大梯度区域,如边界层和自由剪切层,Fluent提供了自动网格适应功能,能够更精确地预测流动行为。 - **计算灵活性**:使用C语言编写,具备动态内存分配、高效数据结构和灵活的求解控制等特点。采用客户端/服务器架构,支持高效运行和跨平台操作。 #### 二、Fluent程序结构 Fluent的程序结构主要包括以下几个部分: - **FLUENT解算器**:核心组件,负责求解物理方程,模拟流体流动和传热过程。 - **prePDF**:用于模拟PDF燃烧的程序。 - **GAMBIT**:几何建模和网格生成工具,用于创建几何模型并生成初始网格。 - **TGrid**:用于从已有边界网格中生成体网格的前处理程序。 - **Filters (Translators)**:从各种CAD/CAE软件中导入面网格或体网格的转换工具,支持ANSYS、I-DEAS、NASTRAN、PATRAN等多种格式。 #### 三、Fluent的核心功能 Fluent提供了全面的模拟功能,包括但不限于以下几点: - **非结构网格**:支持多种类型的非结构网格,包括三角形/五边形、四边形/五边形以及混合网格,能够有效处理复杂外形。 - **流动类型**:覆盖不可压缩和可压缩流动,支持定常和瞬态分析。 - **流体类型**:适用于无粘性、层流和湍流流动,支持牛顿流体和非牛顿流体。 - **热力学特性**:涵盖自然对流和强迫对流,提供耦合传热和对流传热模型。 - **辐射模型**:包含辐射传热效应,适用于高温流动系统。 - **坐标系模型**:支持惯性坐标系和旋转坐标系,可用于旋转设备的模拟。 - **多参考框架**:支持滑动网格接口和转子/静子相互作用模型,适用于多部件相对运动的情况。 - **化学反应**:能够模拟化学组分的混合和反应过程,包括燃烧模型和表面沉积反应。 - **离散相模型**:可以计算粒子、液滴和气泡的拉格朗日轨迹,考虑连续相与离散相之间的耦合效应。 - **多孔介质流动**:适用于多孔介质中的流动模拟。 - **一维模型**:提供一维风扇/热交换器模型。 - **两相流**:支持气穴现象的模拟。 - **自由表面流动**:能够处理复杂外形下的自由表面流动问题。 #### 四、Fluent的应用领域 由于Fluent的强大功能,它被广泛应用于多个领域: - **过程和过程设备**:如化工反应器的设计和优化。 - **能源**:石油和天然气生产、发电厂等。 - **航空航天**:飞行器设计、推进系统分析。 - **汽车工业**:车辆空气动力学、冷却系统设计。 - **热交换**:热交换器效率提升。 - **电子散热**:电子产品内部热管理。 Fluent作为一款先进的流体仿真软件,不仅具备强大的计算能力和高度灵活的网格处理功能,还拥有广泛的模拟功能,能够满足不同领域的应用需求。
2025-10-12 22:12:37 10.3MB
1
数字微分器设计算例7.6.1 分别用矩形窗和哈明窗设计N=6的数字微分器。 解:此题的MATLAB程序hc761非常简单: N=6; tau=(N-1)/2; n=[0:N-1]+eps; % 微分器长度 hd =-sin((n-tau).*pi)./(pi.*(n-tau).^2); % 脉冲响应 hh=hd.*hamming(N)‘; % 加哈明窗后的系数 [Hd,wd]=freqz(hd,1); %矩形窗微分器频率响应 [Hh,wh]=freqz(hh,1); % 哈明窗微分器频率响应 运行程序所得的微分器系数分别为hd及hh。其符幅特性见下图,对三种情况进行了比较》
2025-09-10 19:45:03 4.15MB matlab
1
PSASP算例模型:IEEE 39节点系统融合新能源风机与光伏,全方位电力分析软件体验,潮流计算等稳定分析应有尽有,搭配Visio原图辅助,附赠无节点限制软件体验版。,PSASP算例模型详解:IEEE 39节点系统融合新能源,全面分析电力性能与稳定性分析,PSASP算例模型,标准IEEE39节点系统模型,加新能源风机和光伏,(可配visio原图,发lunwen会用到的)。 买算例送无节点限制psasp软件7.41 模型可进行潮流计算,最优潮流,短路计算,暂态稳定性分析,小干扰稳定性分析,电压频率稳定分析,电能质量分析等等等等。 自己搭建的模型 网上流传的模型参数都不全,无法运算。 ,PSASP算例模型; IEEE39节点系统; 新能源(风机+光伏); 潮流计算; 最优潮流; 短路计算; 暂态稳定性分析; 电压频率稳定分析; 电能质量分析; 无节点限制PSASP软件7.41; 自定义模型; 参数不全。,基于PSASP的定制新能源模型:IEEE39节点系统优化与稳定性分析
2025-08-19 12:31:42 3.83MB 哈希算法
1
ANSYS Fluent作为计算流体动力学(CFD)领域广泛使用的软件之一,是用于模拟流体流动和热传递过程的强大工具。在本算例中,研究的主题是天然气管道泄露的模拟,这在工业安全、环境监测和事故预防等多个方面具有重要意义。 在进行天然气管道泄露模拟时,首先需要构建准确的物理模型。这包括管道的几何形状、泄露孔的尺寸和位置以及周围的环境条件。这些参数直接影响模拟的准确性和可靠性。通过ANSYS Workbench,可以方便地搭建模型并设置网格,为后续的流体动力学计算做准备。 在计算流体动力学的模拟过程中,需要设定合适的边界条件,例如管道内部的压力、温度以及天然气的流速等。此外,泄露过程中的湍流模型选择也尤为关键,常用的模型有k-ε模型、k-ω模型等,它们对于计算结果的精确度有着显著影响。 模拟过程涉及到的流体动力学方程主要是Navier-Stokes方程,它们是描述流体运动的基本方程。在Fluent软件中,这些方程被转化为数值形式,通过迭代求解器进行求解,以得到流体的速度、压力、温度等参数在时间和空间上的分布。 天然气泄露模拟的一个关键输出是泄露速率和泄露范围,这关系到潜在的危险程度和应急响应措施。通过模拟,可以得到泄露气体在不同条件下的扩散模式,这对于制定安全措施和应急计划具有重要的指导意义。 为了提高模拟的准确性,通常需要对模拟结果进行验证,比较实验数据和模拟结果,以确保模型和参数设置的合理性。此外,对模拟结果的分析还需要考虑实际环境因素的影响,如风速、风向、地面粗糙度等对泄露扩散的影响。 模拟结束后,可以得到一系列可视化结果,包括泄露气体的浓度分布、速度场、温度场等,这些可以直观地展示泄露过程中流体的行为。通过后处理功能,还可以进一步分析数据,例如绘制关键截面的参数曲线,为工程师提供决策依据。 ANSYS Fluent天然气管道泄露模拟的算例为工程师提供了一个强大的工具,以预测和分析泄露事故可能造成的影响。这对于管道设计、安全评估以及环境影响评价都有着不可替代的作用。通过此类模拟,不仅可以减少事故发生的风险,还可以在事故发生后提供有效的应急响应方案,从而保护人员安全和环境安全。
2025-08-08 16:23:51 409.33MB 仿真计算 Fluent
1