Retinex算法是图像处理领域中一种模拟人眼视觉特性的经典算法,其名称来源于“Retina”(视网膜)和“NeXt”(下一步),旨在通过模拟人眼对光线的处理过程,增强图像的局部对比度,改善图像质量,使色彩更加鲜明,同时降低光照变化的影响。该理论由Gibson在1950年提出,基于两个核心假设:一是图像的颜色信息主要体现在局部亮度差异而非全局亮度;二是人眼对亮度对比更敏感,而非绝对亮度。 Retinex算法的核心思想是通过增强图像的局部对比度来改善视觉效果。它通过计算图像的对数变换并进行局部平均,从而突出图像的细节和色彩,同时减少光照不均匀带来的影响。 MSR是Retinex算法的一种改进版本,引入了多尺度处理的概念。它通过以下步骤实现: 图像预处理:对原始图像进行归一化或滤波,以减少噪声和光照不均匀的影响。 多尺度处理:使用不同大小的高斯核生成多个尺度的图像,每个尺度对应不同范围的特征。 Retinex处理:在每个尺度上应用Retinex算法,通过计算对数变换和局部平均来增强图像细节。 融合:将不同尺度的处理结果通过权重融合,生成最终的增强图像。MSR能够更好地捕捉不同大小的细节,并降低噪声的影响。 MSSR是MSR的变种,它不仅在尺度上进行处理,还考虑了空间域上相邻像素之间的关系。这种处理方式有助于保留图像的边缘信息,同时提高图像的平滑性,进一步提升图像质量。 在提供的压缩包中,包含三个MATLAB文件:SSR.m、MSRCR.m和MSR.m。这些文件分别实现了不同版本的Retinex算法: SSR.m:实现单一尺度的Retinex算法,仅在固定尺度上处理图像。 MSRCR.m:实现改进的减法Retinex算法,通过颜色恢复步骤纠正光照变化对颜色的影响。 MSR.m:实现基础的多尺度Retinex算法,涉及多尺度图像处理和Retinex操作。 MATLAB是一种广泛应用
2025-07-30 23:30:55 56KB Retinex算法
1
基于MATLAB的全面ADMM算法实现:串行与并行迭代方式应用于综合能源协同优化,MATLAB实现三种ADMM迭代方式的综合能源分布式协同优化算法,MATLAB代码:全面ADMM算法代码,实现了三种ADMM迭代方式 关键词:综合能源 分布式协同优化 交替方向乘子法 最优潮流 参考文档:《基于串行和并行ADMM算法的电_气能量流分布式协同优化_瞿小斌》 仿真平台:MATLAB 主要内容:本代码是较为全面的ADMM算法代码,实现了三种ADMM迭代方式,分别是:1、普通常见的高斯-赛德尔迭代法。 2、lunwen中的串行高斯-赛德尔迭代方法。 3、lunwen中的并行雅克比迭代方法程序的应用场景为参考文献中的无功优化方法,具体区域的划分可能有细微差别,但是方法通用。 ,核心关键词: MATLAB代码; 全面ADMM算法; 三种ADMM迭代方式; 交替方向乘子法; 分布式协同优化; 最优潮流; 串行高斯-赛德尔迭代; 并行雅克比迭代; 无功优化方法。,基于MATLAB的综合能源系统ADMM算法三种迭代方式优化仿真程序
2025-07-28 15:54:59 1.32MB
1
【Hierarchical RL】动态分层强化学习(DHRL)算法代码 动态分层强化学习,Dynamic Hierarchical Reinforcement Learning (DHRL) 是一种自适应分层强化学习算法,其目标是根据任务和环境的复杂性动态地构建、修改和利用分层策略。DHRL 不仅仅是预定义层次结构的简单执行,而是允许代理在学习过程中根据需要动态生成和调整分层策略,从而实现更好的任务分解和高效学习。 DHRL 扩展了传统的分层强化学习(HRL),通过动态调整层次和策略,使其适应环境中的变化和不确定性。这种方法能够处理复杂任务,特别是那些需要灵活调整策略或面临多种不同子任务的情景。
1
【MADRL】面向角色的多智能体强化学习(ROMA)算法代码 =================================================================== 包含ROMA算法实现的项目代码 =================================================================== 在多智能体系统中,如何让各个智能体有效协作、合理分工,最大化整体性能是一个核心问题。面向角色的多智能体强化学习(Role-Oriented Multi-Agent Reinforcement Learning, ROMA) 算法正是为了解决这一问题而设计的。         在 ROMA 中,“角色”(Role) 是多智能体协作中的核心概念。智能体被分配不同的角色,每个角色决定智能体在任务中的具体职责和行为模式。通过这种角色导向的方式,ROMA 试图提高多智能体系统中的协作效率,同时使得策略学习更加稳定和高效。
2025-05-14 20:36:07 113KB python 人工智能 强化学习
1
机器学习西瓜书学习笔记第1-3章,附第二章模型评估与选择/第三章线性模型算法代码。对应的笔记可参考相应博客。 深入探讨了经验误差与过拟合等关键概念,旨在为读者提供对机器学习中常见问题的基本理解。随后,本章转向模型评估的领域,系统阐述了评估方法与度量方法。评估方法强调了对数据集的全面利用,而度量方法则聚焦于构建模型评价的量化标准。进一步地,本章介绍了校验方法,这一环节对于确保模型评估结果的准确性与可信度至关重要。最后,本章从理论角度出发,对学习器的性能进行了深入分析,旨在为读者揭示学习器行为背后的原理与机制。 一种统计学方法,用于建模和分析两个变量之间的关系:一个因变量和一个或多个自变量。它试图找到自变量和因变量之间的线性关系,这种关系通常用一个方程来表示,这个方程通常被称为线性回归方程。
2025-04-28 20:25:51 1.4MB 机器学习
1
标题中提到了“RRT路径规划算法代码(MATLAB版本)”,说明这是一个关于RRT算法的MATLAB实现版本。RRT,即Rapidly-exploring Random Tree,是一种基于随机采样和树结构的路径规划算法,它广泛应用于机器人学、自动驾驶、工业自动化等领域,用于解决复杂环境下的路径规划问题。该算法的特点在于能够快速地搜索到一条从起点到终点的可行路径,尤其适用于高维空间和动态环境中的路径规划。RRT算法适合解决那些传统路径规划算法难以应对的非线性、非凸空间问题。 描述中强调了代码中包含了算法的注释,并采用了模块化编程方式,这对初学者非常友好,能够帮助他们快速理解和入门RRT算法。这表明该代码不仅具有实用性,同时也具有教学意义,能够成为学习RRT算法的优秀资源。 标签为“rtdbs”,这可能是指“Rapidly-exploring Random Tree with Bidirectional Search”,即双向快速扩展随机树算法。这是一种对RRT算法的改进方法,通过从起点和终点同时进行树扩展,可以进一步提高路径规划的效率和质量,尤其是在路径搜索的空间较大时效果更加明显。 文件列表中包含的多个.doc、.html和.txt文件,暗示了这个压缩包不仅包含了RRT算法的MATLAB代码,还可能包含了路径规划算法的理论讲解、代码解析、操作指南、实践案例等内容。这些内容对于初学者来说非常宝贵,能够帮助他们建立起路径规划算法的完整知识体系。其中的“在众多.doc、是一种基于树结构的路径规划算法它能够快速地搜索并生.doc、路径规划算法代码解析随着计算.html、路径规划算法代码版本技.html、探索路径规划算法从基础到实践在数字化时代路径规.html、路径规划算法代码.html”等文件名,显示了文件内容的多样性和丰富性,覆盖了从理论到实践、从入门到进阶的多个层面。而“1.jpg”可能是一张示意图或者算法的流程图,有助于可视化理解算法过程。“基于路径规划算法的代码实现及注释一.txt、当然可以下面是一篇关于随机扩展道路树路径规划.txt、路径规划算法代码版本一引言随着现代计.txt”这些文本文件可能包含了详细的算法实现说明和相关背景介绍。 这个压缩包是一个宝贵的资源,它不仅提供了RRT路径规划算法的MATLAB实现代码,还包含了详尽的理论讲解和实践指导,适合各个层次的学习者,尤其是对于初学者来说,能够帮助他们快速入门并深入理解RRT算法及其在路径规划中的应用。
2025-04-20 13:36:31 294KB
1
matlab中存档算法代码FRC_分辨率 在光学纳米技术中测量图像分辨率 FRCresolution软件发行 该软件作为RJP Nieuewenhuizen,KA Lidke,M.Bates,D.Leyton Puig,D.Grunwald,S.Stallinga,B.Rieger,Nature Methods,2013 doi:10.1038 / nmeth.2448的文章的随附软件进行分发。 此发行版包含MATLAB软件和ImageJ插件,以运行(部分)本文中介绍的算法。 MATLAB软件比ImageJ插件更广泛。 的MATLAB 提供的脚本使用Matlab()。 该示例代码使用DIPimage工具箱中的功能,您必须先安装它,然后才能运行提供的示例。 DIPimage是可免费使用的MATLAB图像处理工具箱: 提供Windows的安装程序,Linux和Mac的存档文件。 此外,具有曲线拟合工具箱也很方便,但不是必需的。 在matlabfunctions目录中,包含所有相关的matlab功能。 有4个示例显示了对2D FRC分辨率和曲线example1.m,2D各向异性FLC exa
2025-04-14 09:30:37 18.15MB 系统开源
1
在MATLAB环境中,存档算法代码是常见的实践,以便于保存、分享和复用工作。本项目名为"3d-sift",源自code.google.com/p/3d-scale-invariant-feature-transform(3D-SIFT)的开源项目,专门用于3D场景中的特征检测和描述。在MATLAB中实现3D-SIFT算法,对于计算机视觉和图像处理领域具有重要意义,特别是对于3D点云数据的处理和分析。 3D-SIFT算法是2D-SIFT(尺度不变特征变换)的扩展,2D-SIFT是David Lowe在1999年提出的,用于图像识别和匹配。3D-SIFT则将这一概念扩展到三维空间,能够从3D数据中提取稳健的、尺度和旋转不变的特征。在3D模型匹配、3D重建以及3D物体识别等应用中,3D-SIFT具有显著优势。 存档的代码通常包含以下几个部分: 1. **预处理**:3D数据通常需要进行预处理,如降噪、去噪和滤波,以提高后续特征检测的准确性。可能涉及的MATLAB函数有`medfilt3`(3D中值滤波)或`fspecial`(创建滤波器)等。 2. **尺度空间构建**:SIFT算法的核心在于尺度空间的构建,这通常通过高斯差分金字塔实现。MATLAB中可以使用`pyramid_gauss`或自定义的函数来创建这一金字塔。 3. **关键点检测**:在每个尺度层,通过检测局部极值点(局部最大或最小值)来找到关键点。MATLAB中可以利用梯度信息(如`gradient`函数)和Hessian矩阵(如`hessian`函数)来检测这些点。 4. **关键点精炼**:检测到的关键点可能不理想,需要进一步精炼。这包括去除边缘响应、消除重复点、稳定位置和尺度等。可能用到的MATLAB功能有`isoutlier`(检测异常值)和`uniquerows`(去除重复点)。 5. **方向分配**:为每个关键点分配一个主方向,使得描述子对旋转具有不变性。这可以通过计算局部梯度方向直方图来完成,MATLAB中的`histcounts`函数可辅助这一过程。 6. **描述子生成**:在每个关键点周围的小区域内采样梯度信息,生成描述子向量。这一步可能涉及`imgradient`或`edge`函数,以及自定义的采样策略。 7. **归一化和存储**:描述子向量通常会被规范化,并存储以便于后续的匹配和识别。 在"3d-sift-master"这个压缩包中,你可以期待找到与上述步骤相关的MATLAB脚本和函数。这些文件通常以`.m`后缀,例如`detect3DSIFT.m`可能包含了关键点检测的实现,`compute3DDescriptor.m`可能负责生成描述子,而`match3DSIFT.m`则可能用于特征匹配。 开源标签意味着这些代码是公开的,允许用户查看、学习、修改和分发。通过研究这些代码,你可以深入理解3D-SIFT算法的内部工作机制,也可以根据自己的需求进行定制和优化。此外,参与开源社区,你可以与其他开发者交流,获取反馈和建议,提升自己的编程技能和问题解决能力。
2025-03-26 18:07:17 121.75MB 系统开源
1
python实现svm支持向量机算法代码,数据集随机生成
2024-11-26 15:26:52 1KB python 支持向量机
1
Python粒子群优化算法(PSO,Particle Swarm Optimization)是一种基于群体智能的全局优化算法,源自对鸟群和鱼群集体行为的研究。该算法通过模拟粒子在多维空间中的搜索行为来寻找最优解,每个粒子代表可能的解决方案,并通过与自身历史最佳位置和群体最佳位置的迭代更新来逐步接近最优解。 在`main_pso.py`这个文件中,我们可以预期它包含了实现粒子群优化算法的Python代码。通常,这样的代码会包含以下几个关键部分: 1. **初始化**:需要初始化粒子群,包括每个粒子的位置和速度。位置通常在问题的搜索空间内随机生成,而速度则设定为一个小的随机值,确保粒子在初期能进行广泛探索。 2. **适应度函数**:这是评估每个粒子质量的关键,即计算粒子对应解的优劣。适应度函数通常与待解决的问题相关,如最小化一个目标函数或者最大化一个目标函数。 3. **更新规则**:在每代迭代中,粒子根据其当前速度和位置,以及自身和全局最佳位置的差距进行更新。公式一般如下: - 新速度 = ω * 旧速度 + c1 * r1 * (粒子最佳位置 - 当前位置) + c2 * r2 * (全局最佳位置 - 当前位置) 其中,ω是惯性权重,c1和c2是加速常数,r1和r2是随机数,用于引入探索和开发的平衡。 4. **边界处理**:粒子在更新位置时可能会超出搜索空间的边界,因此需要进行边界处理,确保粒子始终在可行域内移动。 5. **迭代**:重复上述过程直到达到预设的迭代次数或满足其他停止条件(如达到目标精度或解的稳定性)。 6. **结果输出**:输出最优解(全局最佳位置)和对应的适应度值。 文本`.docx`文件可能包含了算法的理论背景、使用说明、示例应用或其他相关资料。对于初学者,理解粒子群优化算法的基本原理和代码实现是至关重要的,这有助于将PSO应用于实际问题,如函数优化、机器学习模型参数调优、工程设计等领域。 在Python中,`numpy`和`scipy`等科学计算库经常被用来辅助实现PSO算法,它们提供了高效的数组操作和优化工具。此外,还有一些现成的Python库,如`pyswarms`,提供了封装好的PSO算法接口,便于快速应用。 Python粒子群算法代码通过模拟粒子的群体行为,寻找复杂问题的全局最优解。`main_pso.py`文件中的实现涵盖了初始化、更新规则、适应度评估等核心步骤,而`.docx`文件则可能提供了算法的详细解释和使用指导。通过学习和实践,我们可以掌握这种强大的优化工具,并将其应用到实际的工程和研究项目中。
2024-10-27 09:31:58 73KB python
1