yolov5/yolov8/yolo11/yolo目标检测数据集,光伏面板红外图像热斑缺陷检测数据集,12736张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 3个类别:金色斑点、浅金色斑点、阴影。 图像分辨率为大分辨率RGB图片。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151869402 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-11-10 17:10:10 721.34MB yolov5数据集 yolo数据集
1
电力场景电气设备红外图像变压器检测数据集VOC+YOLO格式4271张14类别,是一份详尽的图像数据集,主要用于电力设备检测领域中的变压器检测。这份数据集包含了4271张红外图像,每张图片都对应一张VOC格式的xml文件和YOLO格式的txt文件,用以支持图像的物体识别和定位任务。 数据集采用Pascal VOC格式和YOLO格式结合的方式提供,其中VOC格式包含图像标注的矩形框、类别等信息,而YOLO格式则适用于YOLO系列目标检测算法。数据集中不包含分割路径的txt文件,仅限于图片、VOC格式xml标注文件和YOLO格式txt标注文件。 数据集共标注有14种不同的类别,每个类别都有详细的标注信息,这些类别包括但不限于空气断路器(ACB)、电流互感器(CT)、连接器(Connection)、避雷器(LA)、负荷开关(LBS)等。每张图片中,相应的类别都有对应的矩形框来标定其位置。 具体到每个类别的标注框数,数据集中标注最多的类别为“Connection”,框数达到了3961个,而“core”类别标注的框数最少,为699个。这14个类别总共标注了11896个框。这些数据标注均使用了labelImg工具进行,标注规则是为每个类别画出矩形框。 需要注意的是,尽管这份数据集为电力设备检测提供了极为宝贵的信息和便利,但数据集提供者并不对使用这些数据训练出的模型或权重文件的精度提供任何保证。使用者应自行评估数据集的适用性和准确性,对模型的性能负责。 数据集的使用场景主要集中在电力设备,尤其是变压器的检测工作。通过这些红外图像和对应的标注,研究人员和工程师可以构建和训练目标检测模型,以实现对电力设备缺陷和异常状态的自动检测。这不仅提高了检测的效率,而且对于保障电力系统的稳定运行和预防事故的发生都具有重要的意义。 值得注意的是,该数据集的下载地址为下载.csdn.net/download/2403_88102872/90089745。这一资源对于需要进行相关研究的科研人员和工程师来说是一个宝贵的资料库。
2025-09-25 13:38:47 1006KB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144195908 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):419 标注数量(xml文件个数):419 标注数量(txt文件个数):419 标注类别数:10 标注类别名称:["bypass_diode","bypassed_substrings","defect_string","hot_module","hotspot","open_circuit-","overheated_connection","pid","reverse_polarity","suspected_pid"]
2025-04-26 01:34:46 407B 数据集
1
输电线路绝缘子红外图像,数据集内含6000多幅绝缘子红外图像,并利用labelimg软件对其进行了标注,标签类别为insulator(绝缘子),标签类型为yolo(txt)格式,有问题加Q:2954644583
2024-08-19 11:09:34 25.22MB 数据集
1
适用于图像分类 目标检测 数据集较小 无花果公开数据集
2024-05-05 10:42:44 32.2MB 目标检测 数据集
1
为改善红外图像的视觉效果和后续处理质量,需要对图像进行增强处理。在此介绍并实现了一种空间域图像增强算法,自适应分段线性拉伸算法。首先简要分析算法原理,对该算法基于Xilinx公司XC4VLX15系列FPGA的实现方法进行了研究,以兼顾系统实时性和集成度为目的,提出灰度直方图统计和拉伸运算等关键模块的解决方案。通过试验结果分析,对压缩因子的选取提出建议。该设计的输出延迟仅为62.5 ns,且具有实现简单、集成度高、功耗低等优点,适合在精确制导武器和导航系统中应用。
1
由于煤矿带式输送机关键部件缺乏有效监测,而传统目检、温度监测方法存在工作量大、盲点多等问题,文中提出一种基于连通分量的带式输送机托辊红外图像自动分割与定位算法,对巡检机器人沿巡检轨道采集的带式输送机红外图像进行处理,利用垂直和水平投影截取托辊所在区域,减少支架、输送带以及背景对后续图像处理的影响;采用基于连通分量的长短轴比和面积信息对图像边缘进行过滤,消除对上述截取图像进行边缘检测形成的伪边缘,保留托辊的真实边缘;利用形态学闭运算连接托辊边缘缝隙,通过边界跟踪获得托辊闭合轮廓并进行种子区域填充,实现托辊自动分割;最后根据所得托辊二值图像闭合轮廓,基于轮廓像素点遍历在原红外图像完成托辊的自动定位。实验表明,本方法可快速实现托辊的自动分割和定位,为带式输送机托辊的运行状态监测奠定了基础。
2024-02-28 23:51:23 835KB 行业研究
1
红外图像处理算法的研究 学位论文 内容详实 论述清晰 针对红外图象特征
2023-11-23 14:09:05 28.93MB 红外图象 图象处理 处理算法
1
可见一红外图像之间配准点的数量不足、分布严重不均匀以及配准点之间的错配率高这3个 核心问题,提出一种基于自适应特征点检测的可见一红外图像配准方法。方法本文提出的自适应特征点检测方 法,以Harris comer作为基本特征点;以特征点数目与空间分布为检测目标,从而自动地估计合适不同空间位置的 特征点的检测阈值。在特征点对匹配中,将梯度方向与互信息相融合有效地添加了相似性函数的空间位置信息。 结果 自适应Harris comer检测方法能够有效地提供空间分布均匀、数量充足的特征点。而梯度方向与互信息相 融合的相似性匹配函数提高特征点的匹配率20%,降低配准误差50%。结论 本文提出的多传感器图像配准方 法能够快速、准确地实现可见光图像与红外图像之间的配准,在CCD—IR图像融合领域具有很好的实用价值。
2023-03-17 14:21:35 3.44MB 自适应 特征点检测
1
本文分别从提高红外图像对比度、抑制噪声、增强红外图像彩色对比度这三 个角度研究了红外弱小目标图像的增强方法。文章介绍了红外图像增强的基本概 念和图像增强的效果评价,究了红外图像的成像机理和特点。首先分析了红外弱小目标图像噪声成因和目标成像特点,在抑制噪声方面重点分析比较了平滑滤波和中值滤波的优缺点,然后分析和研究了常用的基于直方图的方法、灰度变换、空间滤波以及基于数学形态学的弱小目标图像增强算法。最后本文研究了红外弱小目标图像的伪彩色增强,实验结果表明增强后的图像改善了视觉效果,提高了对比度。
1