内容概要:这篇文档详细讲解了PyTorch的入门与应用方法。首先简述了PyTorch作为现代深度学习框架的优势与应用场景。随后介绍了如何安装和配置PyTorch开发环境,涉及Python版本选择和相关依赖库的安装。接着解释了PyTorch中最核心的概念——张量,及其创建、操作和与Numpy的互转等知识点。自动求导部分讲述了计算图的构建、自动求导的工作原理及参数更新的流程。神经网络方面,则涵盖了自定义神经网络的建立,包括常见的层如全连接层、卷积层等,并介绍了常见损失函数(如均方误差、交叉熵)及优化器(SGD、Adam)。最后,通过CIFAR-10图像分类任务的实际操作案例,展示了如何从头到尾实施一个完整的机器学习项目,包括数据加载、模型设计、训练、评估等一系列流程。此外还提及了后续扩展学习方向以及额外的学习资源推荐。 适合人群:主要面向希望掌握PyTorch框架并在实践中理解深度学习技术的专业人士或爱好者。 使用场景及目标:适用于希望深入学习PyTorch并能够独立构建和训练模型的技术人员;目标是在实际工作中运用PyTorch解决复杂的深度学习问题。 阅读建议:本文档适合有一定编程经验且
2025-04-07 14:45:52 333KB 深度学习 PyTorch GPU加速 自动求导
1
easytorch 使用Python的numpy实现的简易深度学习框架,API与pytorch基本相同,实现了自动求导、基础优化器、layer等。 1 文档目录 2 Quick Start from easytorch.layer import Linear, Tanh, Sequential from easytorch.optim import SGD import easytorch.functional as F # Create a model, optimizer, loss function model = Sequential( Linear(1, 5), Tanh(), Linear(5, 1) ) opt = SGD(model.parameters(), lr=3e-4) loss_fn = F.mse_loss # train the mod
2023-05-15 20:47:00 35KB deep-learning autograd autodiff JupyterNotebook
1
今天小编就为大家分享一篇浅谈Pytorch中的自动求导函数backward()所需参数的含义,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2023-02-15 21:33:27 170KB Pytorch 自动求导函数 backward
1
基于pytorch自动求导机制的牛顿迭代法实现框架,求解的函数可自行替换为任意函数
2022-01-08 19:06:57 709B python 牛顿迭代法
1