疾病预测和医疗推荐系统的开发是近年来医疗健康领域应用人工智能技术的重要进展。通过机器学习技术,该系统能够根据用户输入的症状进行疾病预测,这不仅提高了医疗诊断的效率,还为用户提供个性化的医疗服务建议。该系统主要功能可以分为两大模块:疾病预测和个性化医疗推荐。 在疾病预测方面,系统首先需要收集和整理大量的医疗数据,这些数据包括但不限于患者的病例记录、医学检验结果以及相关的临床研究资料。通过对这些数据的深入分析,机器学习模型能够学习到不同症状和疾病之间的关联规律。当用户输入自己的症状后,系统会利用训练好的模型来分析症状与可能疾病的对应关系,并给出一个或多个可能的疾病预测结果。 疾病预测只是第一步,更为核心的是提供个性化医疗建议。根据预测结果,系统能够为用户推荐量身定制的药物治疗方案、饮食调整建议以及锻炼计划。例如,对于高血压患者,系统不仅会推荐特定的降压药物,还会根据患者的生活习惯和体质,提供适合的饮食方案,如低盐低脂食谱,以及适宜的运动方式和运动强度建议,如温和的有氧运动和力量训练。 要实现这样一个系统,其开发过程中需要解决一系列的技术挑战。准确收集和处理医疗数据至关重要。数据的质量直接决定了模型的预测能力。需要选择合适的机器学习算法来构建疾病预测模型。常用的算法包括决策树、随机森林、支持向量机、神经网络等。为了提高预测的准确性和系统的可靠性,通常需要对多种算法进行尝试和比较,并通过交叉验证等方法对模型进行优化。 此外,系统还需要具备良好的用户体验设计。通过友好的界面设计让用户能够方便地输入自己的症状信息,并且清晰地展示预测结果和医疗建议。这通常需要前端开发技术来实现,比如HTML、CSS和JavaScript等。系统后端则需要处理数据存储、模型计算等任务,确保整个服务的流畅运行。 为了确保系统的安全性和隐私性,还需要考虑数据加密和访问控制机制,以保护用户的敏感信息。在数据存储和处理过程中,遵守相关的医疗保健数据保护法规是非常必要的。此外,系统在部署前还需要进行严格的测试,以确保其稳定性和可靠性。 疾病预测和医疗推荐系统不仅需要先进的机器学习技术作为核心支撑,还需要结合前端技术、后端服务以及用户界面设计。通过这些技术的综合应用,可以实现一个高效、准确且用户友好的医疗服务平台。
2025-10-05 21:07:30 2.82MB
1
D3FG 是一个在口袋中基于功能团的3D分子生成扩散模型。与通常分子生成模型直接生成分子坐标和原子类型不同,D3FG 将分子分解为两类组成部分:官能团和连接体,然后使用扩散生成模型学习这些组成部分的类型和几何分布。本文对D3FG进行了测评,包括:环境安装、分子生成、模型训练、报错排除、生成分子对接、高打分分子展示等;
1
适合学习/练手、毕业设计、课程设计、期末/期中/大作业、工程实训、相关项目/竞赛学习等。 项目具有较高的学习借鉴价值,也可直接拿来修改复现。可以在这些基础上学习借鉴进行修改和扩展,实现其它功能。 可放心下载学习借鉴,你会有所收获。 —— 对于学习和实践,选择合适的项目和资源确实是一种有效的方式。 在进行毕业设计、课程设计或大作业时,选择具备学习借鉴价值的项目可以帮助你理解和应用所学知识,同时也可以通过修改和扩展来实现其他功能。 通过参与实际项目,你可以应用所学的理论知识,深入了解软件开发或其他领域的实践流程和技术要求。 可放心下载学习借鉴,你会有所收获。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
2025-06-02 21:19:29 9.13MB web 系统设计 源码
1
SurfDock 来源于中国科学院上海药物所的郑明月为通讯作者的文章:《SurfDock is a Surface-Informed Diffusion Generative Model for Reliable and Accurate Protein-ligand Complex Prediction》于2024 年 11 月 27 日正式发表在 《Nature Methods》上。在文章中,SurfDock 在多个基准测试中展现了卓越的表现,包括 PDBbind 2020 时间分割集、Astex Diverse 集和 PoseBusters 基准集。在模型中,SurfDock 将多模态蛋白质信息(包括表面特征、残基结构和预训练的序列级特征)整合成一个一致的表面节点级表示,这一能力对实现高对接成功率和改善构象合理性起到了重要作用。SurfDock 的另一个特点是其可选的弛豫(构象优化),旨在进行蛋白质固定配体优化,从而显著提高其准确性。 我们的测评结果显示,生成的小分子构象还是比较合理的,同时生成的结合模式与晶体非常接近。
2025-05-21 16:03:15 24.79MB 分子对接 深度学习 扩散模型 药物设计
1
IPDiff 是一个基于蛋白质-配体相互作用先验引导的扩散模型,首次把配体-靶标蛋白相互作用引入到扩散模型的扩散和采样过程中,用于蛋白质(口袋)特异性的三维分子生成。来源于文章 《Protein-Ligand Interaction Prior for Binding-aware 3D Molecule Diffusion Models》。文章链接: https://openreview.net/forum?id=qH9nrMNTIW 。 针对原GitHub中代码的问题与报错,本文档对原代码进行了修改,包含了完整的 IPDiff 项目,包含测试体系、可运行(修正报错)、可训练的源代码,并标注了每一个代码修改的位置。 此代码包含了完整的 IPDiff 的使用方法,可以针对某个某个蛋白体系的特定口袋生成结合力强的分子,可以直接用于项目中,或者进行微调再训练。
2025-04-29 21:33:22 15.16MB 药物设计 扩散模型
1
还在为深度学习开发框架选择而烦恼?试试PyTorch技术文档!它来自Facebook人工智能研究院(FAIR),专为深度学习打造。文档详细介绍了动态图机制,构建模型超灵活,实验迭代超快速。张量操作、神经网络层、优化器等模块讲解全面,GPU加速让计算效率飙升。还有丰富的生态系统,像计算机视觉的TorchVision、自然语言处理的TorchText 。无论你是新手入门,还是经验丰富的开发者,这份文档都能成为你的得力助手,赶紧来探索深度学习的无限可能! 药物分子生成是药物研发中的核心环节,其目的是设计出具有特定药理活性和良好药代动力学性质的新型药物分子。这一过程传统上耗时长、成本高,并伴随着大量的实验和筛选工作。然而,随着人工智能技术特别是深度学习的发展,新的药物分子生成方法为药物研发带来了革命性的变革。 Transformer架构,最初在自然语言处理领域取得巨大成功,如今已被证明在药物分子生成方面具有独特的潜力。该架构的核心是其强大的序列建模能力,尤其是多头自注意力机制,它能够捕捉到序列中字符或元素之间的长距离依赖关系。通过这种机制,Transformer能够学习到药物分子表示,如SMILES字符串中复杂的模式和规律,并生成结构合理的药物分子。 基于Transformer的TransORGAN模型,正是在这样的背景下被提出来解决药物分子生成的挑战。TransORGAN模型采用了Transformer编码器和解码器的经典设计,并在模型中加入了输入嵌入层、生成器和解码器。输入嵌入层负责将SMILES字符串中的字符转换成低维向量表示;Transformer编码器对这些嵌入向量进行特征提取和转换;生成器根据编码器的输出生成潜在的分子表示;解码器再将潜在分子表示转换回SMILES字符串。 在模型的具体实现上,TransORGAN使用了PyTorch框架,这是一个由Facebook人工智能研究院(FAIR)开发的深度学习框架。PyTorch以其动态图机制著称,使得模型构建和实验迭代变得极其灵活和快速。张量操作、神经网络层和优化器等模块都得到了全面的讲解,同时GPU加速功能显著提升了计算效率。此外,PyTorch拥有丰富的生态系统,包括TorchVision和TorchText等库,分别支持计算机视觉和自然语言处理的深度学习应用,为开发者提供了强大的支持。 TransORGAN模型在ZINC数据集上的实验验证进一步证实了其在药物分子生成中的有效性。ZINC数据集包含了大量的药物分子,是评估相关模型性能的重要资源。通过在ZINC数据集上的应用,TransORGAN模型展示了其在药物分子生成上的高效率和准确性,为未来的药物研发工作提供了新的范式。 总结而言,随着深度学习技术的不断进步,特别是PyTorch这类先进框架的出现,基于Transformer的TransORGAN模型为药物分子生成领域带来了创新的方法。通过高效准确地生成新的药物分子,TransORGAN有望显著提升药物研发的效率和成功率,并在未来为更多难治性疾病的治疗提供新的药物选择。
2025-04-11 21:19:50 250KB pyTorch
1
基于spring boot的020药品配送系统,采用线上下单线下配送方式。使用B/S架构在药店配送管理系统实现了分店管理员、工作人员、用户、配送员、药物信息、药品订单、配送订单、完成订单、在线留言等的功能性。研究内容包括:药物信息、药品订单、配送订单、完成订单等方面进行了研究。系统以当前应用最为广泛的Java语言为基础,结合了目前应用最为广泛的嵌入式嵌入式平台,集成了B/S体系结构。数据库选择简便高效的MySQL,springboot框架。在药店配送管理系统进行管理,不仅可以解除时间空间的束缚,还可以节省人力成本,将数据和库存一目了然地呈现在眼前,方便管理,整个系统操作简便,界面亲切,实用性,安全,高效率,能准确完成操作,实现系统的全过程[3]。系统是用Java语言编写的,系统使用的环境变量为jdk1.8[4]。编译器用的是Eclipse,系统采用springboot框架技术,采用Maven管理jar包,后台数据来自数据库mysql。
2024-04-03 14:59:39 49.29MB mysql
1
创新药物研究实验室项目环评报告公示.pdf
2022-12-22 18:22:08 1.49MB 文档资料
1
计算机辅助药物设计自20世纪60年代被提出,以计算化学、计算机科学和生物学等学科为基础,对靶标蛋白质与配体药物的结合过程进行计算模拟、预测,评估药物分子结构与其生物活性、毒性和代谢等性质的相互作用,进行药物分子的发现与优化。高通量技术的发展和应用产生了丰富的药物、疾病、基因和蛋白质等数据,使得开展人工智能药物发现成为可能。近年来,以Google公司AlphaFold为代表的人工智能系统在生命科学领域取得了重要图谱,推动了人工智能等关键领域在药物研发上的应用。 本白皮书收集了国内外关于人工智能和药物发现交叉领域研究的最新成果,值得学习和研究人工智能驱动药物发现的同行深入学习,希望能有更多一类创新药物发现!
2022-12-16 11:25:53 2.72MB 人工智能 药物发现 AIDD 药物设计
1