激光雷达和毫米波雷达数据融合基于无迹卡尔曼滤波算法c++工程项目 SensorFusion-UKF 激光雷达和毫米波雷达数据融合基于无迹卡尔曼滤波算法c++工程项目 基于无迹卡尔曼滤波,改成ROS协议下的 #你需要配置ROS环境以及C++编译 Unscented Kalman Filter Project Starter Code Self-Driving Car Engineer Nanodegree Program Dependencies cmake >= v3.5 make >= v4.1 gcc/g++ >= v5.4 Basic Build Instructions Clone this repo. Make a build directory: mkdir build && cd build Compile: cmake .. && make Run it: ./UnscentedKF path/to/input.txt path/to/output.txt. You can find some sample inputs in 'data/'. e
2025-06-16 22:17:12 213KB
1
### 图像融合及DSIFT算法概念 图像融合是指将两个或多个不同焦距的图像结合成一个具有更全面信息的图像的过程。在医学成像、光学传感等领域有广泛的应用。在图像融合中,DSIFT(DoG尺度不变特征变换)是一种提取图像特征点的方法,具有尺度不变性,能够检测出图像中的稳定特征点。在多聚焦图像融合中,通过特征点匹配,可以更好地解决图像对齐和融合的问题。 ### SIFT算法细节与图像配准 在图像配准阶段,SIFT算法首先在图像中寻找稳定的特征点,然后为这些特征点生成描述子。这些描述子能够有效匹配不同图像间的对应点,即使在图像有较大视角变化或尺度变化的情况下也能保持稳定性。然而,由于显微图像的特点,仅使用SIFT可能不够理想。因为显微图像一般变化较小,主要存在位移和光圈弥散,而非旋转或透视变换。此外,聚焦变化导致的特征点检测差异也会使得匹配复杂化。因此,改进后的算法采用多级下采样与最大相关性方法进行图像配准,这样可以降低计算复杂度,提升实时性。 ### 聚焦度量与融合方法 对多聚焦图像融合而言,首先需要通过聚焦度量来确定图像中的哪些区域是清晰的。文中提到的几种聚焦度量方法包括EOG、EOL、SF和SML。每种方法都有其独特的计算方式,但并非所有方法都适用于所有情况。比如,SML方法在计算每个像素点锐度的同时,还会考虑邻域内的锐度信息,因此可以得到更加准确的聚焦度量,进而产生更好的融合效果,有效避免了伪影的产生,并保留了更多的图像细节。 ### Matlab源码及应用 文档提供了一个基于Matlab的图像融合项目,包括源码。Matlab作为一种科学计算软件,非常适合进行图像处理和算法实现。文中提到了获取源码的具体方式,并介绍了博主的个人主页及相关内容,为感兴趣的读者提供了进一步学习和实践的机会。此外,博主还涉及了路径规划、神经网络预测与分类、优化求解、语音处理、信号处理、车间调度等多个与Matlab相关的领域,展示了其丰富的研究和开发经验。
2025-05-29 16:01:52 7KB
1
内容概要:本文详细介绍了使用MATLAB进行多水下航行器(AUV)协同定位的仿真研究。首先构建了一个简化的双AUV场景,其中一个作为Leader配备高精度惯性导航系统,另一个作为Follower仅有低成本传感器。通过引入扩展卡尔曼滤波(EKF),实现了基于相对距离测量的状态估计优化。文中展示了具体的MATLAB代码实现,包括系统参数初始化、运动模型建立、相对位置测量以及EKF更新步骤。实验结果表明,经过多次协同观测后,Follower的位置误差显著减少。此外,还讨论了实际应用中可能遇到的问题如通信延迟、数据丢失等,并提出了相应的解决方案。最后展望了未来的研究方向,如加入更多AUV形成观测闭环、改进通信协议等。 适合人群:从事水下机器人研究的技术人员、高校相关专业师生、对水下导航感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解水下机器人协同定位原理和技术实现的研究人员;旨在帮助读者掌握EKF在水下定位中的应用,提高多AUV系统的定位精度。 其他说明:文中提供了完整的MATLAB代码片段,便于读者动手实践;强调了理论与实践相结合的学习方式,鼓励读者尝试不同的参数配置以探索最佳性能。
2025-05-27 09:44:44 1.06MB MATLAB 传感器融合
1
《基于多特征融合模型音乐情感分类器的实现》 在当今数字时代,音乐与人们的生活紧密相连,而情感分析在音乐领域中具有重要的应用价值。本文将深入探讨一个名为"FusionModel_MusicEmotionClassifier"的项目,它利用Python编程语言实现了一种多特征融合模型,用于对音乐的情感进行精准分类。 一、音乐情感分类简介 音乐情感分类是将音乐按照其传达的情绪状态进行划分,例如快乐、悲伤、紧张或放松等。这一技术广泛应用于音乐推荐系统、情感识别研究、甚至心理疗法等领域。通过理解和解析音乐中的情感,可以提升用户体验,帮助用户找到符合特定情绪的音乐。 二、Python在音乐分析中的作用 Python因其丰富的库和简洁的语法,成为数据科学和机器学习领域的首选语言。在音乐分析中,Python的库如librosa、MIDIutil、pydub等提供了处理音频数据的强大工具。这些库可以帮助我们提取音乐的节奏、旋律、音色等特征,为情感分类提供基础。 三、多特征融合模型 "FusionModel_MusicEmotionClassifier"的核心在于多特征融合,它结合了多种音乐特征以提高分类性能。这些特征可能包括: 1. 频谱特征:如短时傅立叶变换(STFT)、梅尔频率倒谱系数(MFCC)等,反映音乐的频域特性。 2. 时序特征:如节奏、拍子等,揭示音乐的动态变化。 3. 情感标签:如歌词情感分析,尽管音乐情感主要通过听觉感知,但歌词也可以提供额外的线索。 4. 乐曲结构:如段落结构、主题重复等,这些信息有助于理解音乐的整体情感走向。 四、模型训练与评估 该模型可能采用了深度学习框架如TensorFlow或PyTorch来构建神经网络。常见的架构包括卷积神经网络(CNN)和循环神经网络(RNN),它们擅长处理序列数据,尤其是LSTM和GRU单元,能够捕捉音乐信号的长期依赖性。模型训练过程中,通常会使用交叉验证和早停策略来优化模型性能,防止过拟合。 五、应用场景 1. 音乐推荐:根据用户当前的情绪状态推荐相应音乐,提升用户体验。 2. 情感识别:在电影、广告等多媒体制作中,自动选择匹配情感的背景音乐。 3. 音乐治疗:帮助心理治疗师理解音乐对患者情绪的影响。 4. 创作辅助:为音乐创作者提供灵感,生成特定情感色彩的音乐片段。 六、项目实践 "FusionModel_MusicEmotionClassifier-master"包含了完整的项目源代码和数据集。通过阅读源码,我们可以学习如何从音频文件中提取特征,构建和训练模型,以及评估分类效果。对于想要深入理解音乐情感分析和机器学习实践的开发者来说,这是一个宝贵的资源。 总结,"FusionModel_MusicEmotionClassifier"是一个综合运用Python和多特征融合技术的音乐情感分类项目,它的实现揭示了音乐情感分析的复杂性和潜力,同时也为我们提供了一个研究和学习的优秀实例。通过不断地迭代和优化,未来这一领域的技术将更加成熟,为音乐与人类情感的交互打开新的可能。
2025-05-19 12:02:49 112.43MB Python
1
1. 绪论 图像融合技术是现代信息技术领域的一个重要组成部分,它涉及到图像处理、模式识别、计算机视觉等多个学科。图像融合的主要目的是通过整合不同传感器获取的多源图像信息,提高图像的综合分析能力和理解度。MATLAB作为一款强大的数学计算和可视化软件,其丰富的图像处理工具箱和GUI(图形用户界面)功能为图像融合提供了便利的开发环境。 1.1 课题开发背景 图像融合技术起源于军事和遥感领域,随着科技的进步,其应用已广泛拓展到医学成像、监控系统、自动驾驶等多个领域。MATLAB因其易用性和高效性,成为进行图像融合算法开发和系统构建的首选工具。本文旨在设计一个基于MATLAB的图像融合平台,使非专业用户也能方便地进行图像融合操作。 1.1.1 图像融合的定义 图像融合是指将两幅或多幅图像的特征信息进行整合,生成一幅包含原图像所有信息的新图像,以提高图像的清晰度、对比度和细节表现力。 1.1.2 图像融合研究的发展现状和研究热点 目前,图像融合技术已发展出多种融合策略,如频域融合、空域融合、多尺度融合等。研究热点主要包括融合算法的优化、实时性提升、多模态图像融合以及深度学习在图像融合中的应用。 1.1.3 图像融合的应用 图像融合在医学诊断中可以提高病变检测的准确性;在安全监控中可以增强目标识别和跟踪;在地理遥感中可以增强地表特征的识别;在自动驾驶中则有助于车辆对周围环境的理解。 2. MATLAB程序设计 MATLAB的GUIDE(Graphical User Interface Development Environment)提供了一种直观的方式来创建交互式图形界面。在本设计中,通过GUIDE编辑器,我们构建了三个主要的GUI界面: - 用户登录界面:用户需要输入账号和密码,系统会验证其正确性。若输入错误,将触发错误提示功能。 - 图像融合操作界面:用户可以选择不同的检测过程和融合方法,通过按钮多次添加和选择图片进行融合操作。 - 系统退出功能:用户可以通过特定的功能按钮退出当前界面。 3. 回调函数实现 回调函数是MATLAB GUI的核心,它们是当用户与界面元素交互时被调用的函数。在图像融合平台上,为每个控件(如按钮、菜单等)编写回调函数,实现用户操作与实际功能之间的桥梁。例如,登录按钮的回调函数用于检查账号和密码的正确性,图像选择按钮的回调函数用于读取和处理图片,融合方法选择的回调函数则用于执行相应的融合算法。 4. 关键技术 - 图像读取和预处理:使用MATLAB的imread和imresize等函数对输入图像进行读取和大小调整。 - 图像融合算法:可能包括多分辨率融合、基于小波变换的融合、基于PCA的融合等多种方法,具体取决于用户选择。 - 错误处理:设置适当的错误检查机制,确保用户操作的合法性,如账号密码验证和文件路径检查等。 - 结果展示:融合后的图像通过imshow显示,用户可以查看并保存结果。 基于MATLAB的图像融合平台系统设计结合了GUI编程、图像处理和用户交互,为用户提供了一个便捷的图像融合工具,具有广泛的实用价值。通过不断优化和完善,这个平台有望进一步提升图像融合的效果和用户体验。
2025-05-16 16:51:53 3.19MB
1
基于NXP方案的高效反电动势观测器仿真模型:融合结构简化与功能分区的电机控制策略研究,"基于NXP方案定子电流误差dq轴反电动势观测器模型研究:结合行业趋势及仿真特点详解",基于定子电流误差的dq轴反电动势观测器仿真模型 公开资料显示NXP, Renesas等大厂均使用该反电动势模型,国内某厂家早期版本也使用该反电动势观测器,可见该观测器的独到之处; 知乎上有大佬对该观测器点评承认其特殊之处,该类观测器是闭环类观测器(输出影响输入),行业有使用该类观测器渐多的趋势。 仿真特点: 1. 反电动势观测器部分使用NXP方案,结构简单,参数易调节; 2. 锁相环部分经过特殊处理,任意初始角度都可以闭环直接启动; 3. 可施加一定的初始负载,带载启动能力优秀; 4. 模型严格功能分区,除了观测器还包括MTPA、弱磁、电流环和速度环参数整定等部分,可使电机运行到额定状态 5. 包含基本公式注释,标幺值系统,离散模型 6. 通用表贴和内嵌式电机; 文件包括: 1. 仿真模型文件(2020b版本,可转低版本) 2. Renesas, NXP应用笔记各一篇 ,基于定子电流误差;dq轴反电动势观测器;
2025-05-14 22:59:10 358KB xhtml
1
强化学习DDPG算法在Simulink与MATLAB中的实现与应用:自适应PID与模型预测控制融合的新尝试,基于强化学习DDPG算法的自适应控制及机械臂轨迹跟踪优化研究,强化学习算法,DDPG算法,在simulink或MATLAB中编写强化学习算法,基于强化学习的自适应pid,基于强化学习的模型预测控制算法,基于RL的MPC,Reinforcement learning工具箱,具体例子的编程。 根据需求进行算法定制: 1.强化学习DDPG与控制算法MPC,鲁棒控制,PID,ADRC的结合。 2.基于强化学习DDPG的机械臂轨迹跟踪控制。 3.基于强化学习的自适应控制等。 4.基于强化学习的倒立摆控制。 ,核心关键词: 强化学习算法; DDPG算法; Simulink或MATLAB编写; MPC; 自适应PID; 模型预测控制算法; RL工具箱; 结合控制算法; 鲁棒控制; 轨迹跟踪控制; 机械臂; 倒立摆控制。,强化学习在控制系统中的应用与实现:从DDPG到MPC及PID鲁棒自适应控制
2025-05-12 15:32:12 1.78MB
1
基于YOLOV8的智能道路缺陷检测系统:实现裂缝、交通设施及坑槽洼地的高效识别,创新点融合PyQt界面优化UI体验,支持图像视频输入直接获取检测结果。,基于YOLOV8算法的道路缺陷智能检测系统:实现裂缝、交通设施及坑槽洼地精准识别,创新点融合PyQt界面与UI操作体验优化,基于YOLOV8道路缺陷检测,系列实现道路场景的裂缝、交通设施、坑槽洼地等区域的检测, pyqt界面+创新点 UI界面,支持图像视频输入直接获取结果 ,基于YOLOV8; 道路缺陷检测; 裂缝检测; 交通设施检测; 坑槽洼地检测; pyqt界面; 创新点; UI界面; 图像视频输入,基于YOLOV8的智能道路场景检测系统:UI界面加持的检测方案与创新点
2025-05-11 15:27:52 342KB xhtml
1
牧场收割机 Rancher Harvester是基于Kubernetes构建的开源(HCI)软件。 它是vSphere和Nutanix的开源替代方案。 概述 Harvester在裸机服务器上实施HCI。 以下是收割机的一些显着功能: VM生命周期管理,包括SSH密钥注入,Cloud-init和图形和串行端口控制台 分布式块存储 连接到管理网络或VLAN的多个NIC ISO映像存储库 虚拟机模板 下图给出了Harvester的高级体系结构: 是与Amazon S3兼容的云存储服务器。 是用于Kubernetes的轻量级,可靠且易于使用的分布式块存储系统。 是的虚拟机管理插件。 是Linux发行版,旨在消除Kubernetes集群中尽可能多的OS维护。 该操作系统设计为由kubectl管理。 硬体需求 要启动Harvester服务器并运行以下最低硬件要求: 类型 要求 中央处理
2025-05-10 19:45:52 16.07MB Go
1
传统A*算法与创新版对比:融合DWA规避障碍物的仿真研究及全局与局部路径规划,1.传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 算法经过创新改进,两套代码就是一篇lunwen完整的实验逻辑,可以拿来直接使用 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 可根据自己的想法任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 绝对的高质量。 ,关键词:A*算法; 改进A*算法; 算法性能对比; 融合DWA; 局部路径规划; 全局路径规划; 障碍物规避; 地图设置; 仿真结果; 姿态位角变化曲线。,"改进A*算法与DWA融合:全局路径规划与动态障碍物规避仿真研究"
2025-05-09 00:18:58 898KB
1