永磁同步电机电流前馈与电压补偿法的研究pdf,文章介绍了利用电流前馈调节和电压补偿法提高电动汽车用内埋式永磁同步电机(IPMSM)控制器的控制性能和电磁兼容性的方法,在控制算法中增加了电流前馈调节和电压补偿环节,并利用MATLAB/Simulink对系统的控制算法的可行性和正确性进行了仿真与验证。 永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)在电动汽车领域中扮演着至关重要的角色,特别是内埋式永磁同步电机(Interior Permanent Magnet Synchronous Motor, IPMSM)。由于电机及其控制器属于大功率感性负载,工作时可能会产生传导干扰和辐射干扰,影响其他车载电子设备的正常工作。因此,提升电机控制器的控制性能和电磁兼容性是电动汽车技术中的关键问题。 电流前馈调节和电压补偿法是解决这一问题的有效手段。电流前馈调节通过在控制系统中增加一个前馈环节,可以提前检测并抵消外部扰动对电机电流的影响。具体来说,通过比较指令电流(id*, iq*)和实际反馈电流(id, iq)的差值,经过PID调节器处理,得到Vd*和Vq*,即期望的d轴和q轴电压。这样,即使实际电流存在扰动,也能及时调整,提高系统的抗干扰能力。 电压补偿环节则是在母线电压监控的基础上进行的。通过对母线电压VDC的实时测量,当母线电压出现波动时,可以通过补偿算法来稳定电压,从而减少传导干扰和辐射干扰。这是因为电压的不稳定会直接影响电机的运行效率和稳定性,同时也会增加电磁噪声。 在实现这些方法时,通常会利用MATLAB/Simulink这样的仿真工具进行模型建立和算法验证。通过仿真,可以检验控制算法的可行性、稳定性和准确性,优化参数设置,确保电机在不同工况下的性能。 IPMSM的数学模型是基于电机的d、q轴等效电路,包括电感Ld和Lq,以及定子绕组的电阻Rs。在忽略转速对电感影响的条件下,可以简化电压方程,进一步分析电机的动态响应。通过这些模型,可以设计出更精确的控制策略。 电动汽车的驱动电机选择IPMSM是因为其结构紧凑、效率高、调速范围广、适应性强等特性,尤其适合电动汽车频繁启停、加速和减速的需求。结合电流前馈调节和电压补偿技术,可以进一步提升IPMSM在电动汽车中的应用性能,增强系统的稳定性和电磁兼容性。 电流前馈调节和电压补偿法是提高电动汽车用IPMSM控制器性能的重要途径,通过这两种方法,可以有效地抑制干扰,优化电机控制,从而提高整个电动汽车系统的整体性能和电磁兼容性。在实际应用中,结合数学建模、仿真验证和控制算法的优化,可以实现更高效、更稳定的电机运行。
2026-01-05 11:10:38 693KB
1
冷端温度自动补偿法(补偿电桥法) 补偿电桥法是利用不平衡 电桥产生的不平衡电压Uab作 为偿信号,来自动补偿热电偶 测量过程中因冷端温度不为 0℃变化而引起热电势的变化 值.补偿电桥如左图所示,它 三个电阻温度系数较小的锰铜 丝绕制的电阻r1、r2、r3及电阻温度系数较大的铜丝绕制的电阻rcu和稳压电源组成。补偿电桥与热电偶冷端处在同一环境温度,当冷端温度变化引起的热电势EAB(t,t0)变化时,由于rcu的阻值随冷端温度变化而变化,适当选择桥臂电阻和桥路电流, 就可以使电桥产生的不平衡电压Uab补偿由于冷端温度t0变化引起的热电势变化量,从而达到自动补偿的目的。
2022-01-02 11:15:31 2.9MB 热电偶 18b20.
1
1)了解电力系统稳定器(PSS)基本原理 电力系统稳定器是为抑制低频振荡而研究的一种附加励磁控制技术,它在励磁电压调节器中,引入领先于轴速度的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。用于提高电力系统阻尼、解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。 2)基于MATLAB平台的PSS仿真模型 本设计对低频振荡产生的原因进行分析,并利用MATLAB建立了电力系统的仿真模型,然后针对这个模拟的电力系统进行仿真试验。
2021-10-21 10:15:19 26.43MB 电力稳定器 MATLAB/Simul
1
基于补偿法的均匀照明自由曲面LED反光杯设计
2021-04-28 20:56:35 345KB LabVIEW
1
直线阵的多波束形成 利用相移补偿的原理 但是会出现方位模糊的问题(所有的直线阵都会有这个问题)
2019-12-21 20:12:01 861B 直线阵 补偿法 多波束
1